当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ce-doping-induced defect effects boosting H2 generation
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.jmst.2024.08.040 Chongbei Wu , Xuan Li , Xia Liu , Shuai Wei , Jiaxin Tang , Yonggao Cheng , Zhe Zhao , Aobing Wang , Jizhou Jiang
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.jmst.2024.08.040 Chongbei Wu , Xuan Li , Xia Liu , Shuai Wei , Jiaxin Tang , Yonggao Cheng , Zhe Zhao , Aobing Wang , Jizhou Jiang
Defect engineering holds significant promise for addressing the low conductivity and limited adsorption of reactant molecules in hydrogen generation catalysts. Herein, theoretical predictions based on the d -band center and electron localization function (ELF) calculations indicate that the introduction of Ce induces charge rearrangement, enhancing charge enrichment on Pt atoms. Inspired by these theoretical predictions, a series of PtCeOx /CoNi-LDH catalysts were fabricated for efficient hydrogen generation. The experimental results indicate that introducing metal defects will induce lattice expansion in CeOx doping, leading to the elongation of Pt–O bonds, which effectively reduces the bond energy of Pt–O bonds. The reduction in Pt–O bond energy facilitates the capture and adsorption of reactant molecules, thus exhibiting outstanding catalytic activity with a NaBH4 hydrogen generation rate (HGR) of 8992 mL min–1 gcat –1 . Density functional theory (DFT) calculations show that the adsorption-free energy of the rate-determining step in the PtCeOx /CoNi-LDH catalyst is ca. –3.59 eV, which is lower than the reaction barrier of PtOx /CoNi-LDH (–3.25 eV). This indicates that the PtCeOx /CoNi-LDH catalyst more effectively facilitates the formation of transition state intermediates. Guided by DFT predictions, the successful fabrication of high-efficiency PtCeOx /CoNi-LDH catalysts establishes a strong foundation for the design and development of future hydrogen generation catalysts.
中文翻译:
Ce掺杂诱导的缺陷效应促进H2的产生
缺陷工程对于解决制氢催化剂中反应物分子的低电导率和有限吸附问题具有重要前景。在此,基于 d 波段中心和电子定位函数 (ELF) 计算的理论预测表明,Ce 的引入会诱导电荷重排,从而增强 Pt 原子上的电荷富集。受这些理论预测的启发,制造了一系列 PtCeOx/CoNi-LDH 催化剂以实现高效制氢。实验结果表明,引入金属缺陷会在 CeOx 掺杂中诱导晶格膨胀,导致 Pt-O 键伸长,从而有效降低 Pt-O 键的键能。Pt-O 键能的降低有助于反应物分子的捕获和吸附,从而表现出出色的催化活性,NaBH4 产氢速率 (HGR) 为 8992 mL min–1 gcat–1。密度泛函理论 (DFT) 计算表明,PtCeOx/CoNi-LDH 催化剂中速率决定步骤的无吸附能约为 –3.59 eV,低于 PtOx/CoNi-LDH 的反应势垒 (–3.25 eV)。这表明 PtCeOx/CoNi-LDH 催化剂更有效地促进了过渡态中间体的形成。在 DFT 预测的指导下,高效 PtCeOx/CoNi-LDH 催化剂的成功制备为未来制氢催化剂的设计和开发奠定了坚实的基础。
更新日期:2024-09-11
中文翻译:
Ce掺杂诱导的缺陷效应促进H2的产生
缺陷工程对于解决制氢催化剂中反应物分子的低电导率和有限吸附问题具有重要前景。在此,基于 d 波段中心和电子定位函数 (ELF) 计算的理论预测表明,Ce 的引入会诱导电荷重排,从而增强 Pt 原子上的电荷富集。受这些理论预测的启发,制造了一系列 PtCeOx/CoNi-LDH 催化剂以实现高效制氢。实验结果表明,引入金属缺陷会在 CeOx 掺杂中诱导晶格膨胀,导致 Pt-O 键伸长,从而有效降低 Pt-O 键的键能。Pt-O 键能的降低有助于反应物分子的捕获和吸附,从而表现出出色的催化活性,NaBH4 产氢速率 (HGR) 为 8992 mL min–1 gcat–1。密度泛函理论 (DFT) 计算表明,PtCeOx/CoNi-LDH 催化剂中速率决定步骤的无吸附能约为 –3.59 eV,低于 PtOx/CoNi-LDH 的反应势垒 (–3.25 eV)。这表明 PtCeOx/CoNi-LDH 催化剂更有效地促进了过渡态中间体的形成。在 DFT 预测的指导下,高效 PtCeOx/CoNi-LDH 催化剂的成功制备为未来制氢催化剂的设计和开发奠定了坚实的基础。