Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimizing the prediction of adsorption in metal–organic frameworks leveraging Q-learning
AIChE Journal ( IF 3.5 ) Pub Date : 2024-09-12 , DOI: 10.1002/aic.18611 Etinosa Osaro 1 , Yamil J. Colón 1
AIChE Journal ( IF 3.5 ) Pub Date : 2024-09-12 , DOI: 10.1002/aic.18611 Etinosa Osaro 1 , Yamil J. Colón 1
Affiliation
The application of machine learning (ML) techniques in materials science has revolutionized the pace and scope of materials research and design. In the case of metal–organic frameworks (MOFs), a promising class of materials due to their tunable properties and versatile applications in gas adsorption and separation, ML has helped survey the vast material space. This study explores the integration of reinforcement learning (RL), specifically Q-learning, within an active learning (AL) context, combined with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We demonstrate the effectiveness of the RL-driven framework in guiding the selection of training data points and optimizing predictive model performance for methane and carbon dioxide adsorption, using two different reward metrics. Our results highlight the integration of RL as an AL method for adsorption predictions in MFs, and how it compares to a previously implemented AL scheme.
中文翻译:
利用 Q-learning 优化金属-有机框架中吸附的预测
机器学习 (ML) 技术在材料科学中的应用彻底改变了材料研究和设计的速度和范围。就金属有机框架 (MOF) 而言,由于其可调特性和在气体吸附和分离中的广泛应用,ML 是一类很有前途的材料,ML 帮助研究了广阔的材料空间。本研究探讨了强化学习 (RL),特别是 Q 学习,在主动学习 (AL) 环境中与高斯过程 (GP) 相结合,对 MOF 中的吸附进行预测建模。我们使用两种不同的奖励指标,证明了 RL 驱动框架在指导训练数据点的选择和优化甲烷和二氧化碳吸附的预测模型性能方面的有效性。我们的结果强调了 RL 作为 AL 方法在 MF 中进行吸附预测的集成,以及它与以前实现的 AL 方案的比较。
更新日期:2024-09-12
中文翻译:
利用 Q-learning 优化金属-有机框架中吸附的预测
机器学习 (ML) 技术在材料科学中的应用彻底改变了材料研究和设计的速度和范围。就金属有机框架 (MOF) 而言,由于其可调特性和在气体吸附和分离中的广泛应用,ML 是一类很有前途的材料,ML 帮助研究了广阔的材料空间。本研究探讨了强化学习 (RL),特别是 Q 学习,在主动学习 (AL) 环境中与高斯过程 (GP) 相结合,对 MOF 中的吸附进行预测建模。我们使用两种不同的奖励指标,证明了 RL 驱动框架在指导训练数据点的选择和优化甲烷和二氧化碳吸附的预测模型性能方面的有效性。我们的结果强调了 RL 作为 AL 方法在 MF 中进行吸附预测的集成,以及它与以前实现的 AL 方案的比较。