当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cu3VSe4 Cathode for Rechargeable Magnesium Batteries: Favorable Chemical and Electronic Structures Inducing Intercalation and Displacement Reactions
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-12 , DOI: 10.1002/adfm.202411223 Donggang Tao 1 , Ting Li 2 , Yudi Tang 1 , Hongda Gui 1 , Yuliang Cao 3 , Fei Xu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-12 , DOI: 10.1002/adfm.202411223 Donggang Tao 1 , Ting Li 2 , Yudi Tang 1 , Hongda Gui 1 , Yuliang Cao 3 , Fei Xu 1
Affiliation
Rechargeable Mg batteries are an advantageous energy-storage technology with low cost and high safety, but the design of high-performance cathode materials is currently the major difficulty. Herein, a new cathode material of Cu3VSe4 is fabricated with a comprehensive consideration of the chemical and electronic structures. The intermediate band semiconductor Cu3VSe4 has a cubic crystal structure containing interlaced 3D tunnels. The V and Se atoms form chemical bonds with high covalent proportions and facilitate the charge delocalization via the V‒Se bonds. Because of these features, Cu3VSe4 provides a high capacity of 251 mAh g‒1 with co-redox of Cu, V, and Se elements and an outstanding rate performance of 44 mAh g‒1 at 15 A g‒1. Prominently, a high mass load of 3.0 mg cm‒2 is achieved without obvious rate capability decay, which is quite favorable to pair with the high-capacity Mg metal anode in practical application. The mechanism investigation and theoretical computation demonstrate that Cu3VSe4 undergoes first a Mg-intercalation and then a displacement reaction, during which the crystal structure is maintained, assisting the reaction reversibility and cycling stability. These findings reveal a rational design principle of rechargeable Mg battery cathodes based on a comprehensive consideration of chemical and electronic structures.
中文翻译:
用于可充电镁电池的 Cu3VSe4 阴极:有利的化学和电子结构诱导嵌入和置换反应
可充电镁电池是一种成本低、安全性高的优势储能技术,但高性能正极材料的设计是目前的主要难点。本文综合考虑化学和电子结构,制备了一种新型Cu 3 VSe 4正极材料。中能带半导体Cu 3 VSe 4具有包含交错的3D隧道的立方晶体结构。 V 和 Se 原子形成具有高共价比例的化学键,并通过 V-Se 键促进电荷离域。由于这些特性,Cu 3 VSe 4通过 Cu、V 和 Se 元素的共氧化还原提供了 251 mAh g -1的高容量,以及在 15 A g -1下 44 mAh g -1的出色倍率性能。值得注意的是,在没有明显倍率性能衰减的情况下实现了3.0 mg cm -2的高质量负载,这在实际应用中非常有利于与高容量镁金属阳极配对。机理研究和理论计算表明,Cu 3 VSe 4首先经历Mg嵌入,然后发生置换反应,在此过程中晶体结构得以保持,有助于反应的可逆性和循环稳定性。这些发现揭示了基于化学和电子结构综合考虑的可充电镁电池正极的合理设计原则。
更新日期:2024-09-12
中文翻译:
用于可充电镁电池的 Cu3VSe4 阴极:有利的化学和电子结构诱导嵌入和置换反应
可充电镁电池是一种成本低、安全性高的优势储能技术,但高性能正极材料的设计是目前的主要难点。本文综合考虑化学和电子结构,制备了一种新型Cu 3 VSe 4正极材料。中能带半导体Cu 3 VSe 4具有包含交错的3D隧道的立方晶体结构。 V 和 Se 原子形成具有高共价比例的化学键,并通过 V-Se 键促进电荷离域。由于这些特性,Cu 3 VSe 4通过 Cu、V 和 Se 元素的共氧化还原提供了 251 mAh g -1的高容量,以及在 15 A g -1下 44 mAh g -1的出色倍率性能。值得注意的是,在没有明显倍率性能衰减的情况下实现了3.0 mg cm -2的高质量负载,这在实际应用中非常有利于与高容量镁金属阳极配对。机理研究和理论计算表明,Cu 3 VSe 4首先经历Mg嵌入,然后发生置换反应,在此过程中晶体结构得以保持,有助于反应的可逆性和循环稳定性。这些发现揭示了基于化学和电子结构综合考虑的可充电镁电池正极的合理设计原则。