当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Assembly of Functional Motifs for Artificial Photosynthesis
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-09-12 , DOI: 10.1021/accountsmr.4c00215 Yan-Xi Tan 1, 2, 3 , Xiang Zhang 1, 2, 3 , Yaobing Wang 1, 2, 3 , Jiannian Yao 4
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-09-12 , DOI: 10.1021/accountsmr.4c00215 Yan-Xi Tan 1, 2, 3 , Xiang Zhang 1, 2, 3 , Yaobing Wang 1, 2, 3 , Jiannian Yao 4
Affiliation
Natural photosynthesis has produced most of the energy that fuels human society and sustains life on earth. However, with an ever-growing demand for energy, urgent efforts are required to develop artificial systems that mimic the essential processes of natural photosynthesis, including light harvesting/charge separation, photocatalytic water oxidation, energy storage, and catalytic CO2 reduction. Recent advancements have seen the development of nanoscale photoelectrochemical materials that integrate light absorbers with cocatalysts or redox units for artificial photosynthetic systems. However, the potential of molecular photoelectrochemical materials, which couple electron donor–acceptor (D-A) structures with catalytic or redox-active moieties into a periodic porous aggregate, remains largely underexplored. By combining D–A structures with redox moieties, these materials can enable solar-to-electrochemical energy storage process, while the further incorporation of catalytic sites can extend their application to photo(electro)catalytic water oxidation or CO2 reduction, thus enabling customized artificial systems. On the other hand, they can enhance energy efficiency by molecular-scale in situ photogenerated charge separation coupled with redox reactions─an exciton-involved redox mechanism─to circumvent the energy losses typically associated with charge carrier transport in nanoscale counterparts. Despite these merits, critical challenges remain with a limited understanding of the structure–functional motif relationship at the molecular level and a shortage of molecular assemblies to enable multifunctional motifs necessary for overall natural photosynthesis mimicry.
中文翻译:
用于人工光合作用的功能基序的分子组装
自然光合作用产生了大部分能源,为人类社会提供燃料并维持地球上的生命。然而,随着对能源的需求不断增长,迫切需要开发模拟自然光合作用基本过程的人工系统,包括光收集/电荷分离、光催化水氧化、储能和催化 CO2 还原。最近的进展见证了纳米级光电化学材料的发展,这些材料将光吸收剂与助催化剂或氧化还原单元集成在一起,用于人工光合作用系统。然而,分子光电化学材料的潜力在很大程度上仍未得到充分开发,这些材料将电子供体-受体 (D-A) 结构与催化或氧化还原活性部分耦合成周期性多孔聚集体。通过将 D-A 结构与氧化还原部分相结合,这些材料可以实现太阳能到电化学储能过程,而催化位点的进一步掺入可以将其应用扩展到光(电)催化水氧化或 CO2 还原,从而实现定制的人工系统。另一方面,它们可以通过分子尺度的原位光生电荷分离与氧化还原反应(一种涉及激子的氧化还原机制)相结合来提高能源效率,以规避通常与纳米级电荷载流子传输相关的能量损失。尽管有这些优点,但关键挑战仍然存在,即对分子水平的结构-功能基序关系的理解有限,以及缺乏分子组装体来实现整体自然光合作用模拟所需的多功能基序。
更新日期:2024-09-12
中文翻译:
用于人工光合作用的功能基序的分子组装
自然光合作用产生了大部分能源,为人类社会提供燃料并维持地球上的生命。然而,随着对能源的需求不断增长,迫切需要开发模拟自然光合作用基本过程的人工系统,包括光收集/电荷分离、光催化水氧化、储能和催化 CO2 还原。最近的进展见证了纳米级光电化学材料的发展,这些材料将光吸收剂与助催化剂或氧化还原单元集成在一起,用于人工光合作用系统。然而,分子光电化学材料的潜力在很大程度上仍未得到充分开发,这些材料将电子供体-受体 (D-A) 结构与催化或氧化还原活性部分耦合成周期性多孔聚集体。通过将 D-A 结构与氧化还原部分相结合,这些材料可以实现太阳能到电化学储能过程,而催化位点的进一步掺入可以将其应用扩展到光(电)催化水氧化或 CO2 还原,从而实现定制的人工系统。另一方面,它们可以通过分子尺度的原位光生电荷分离与氧化还原反应(一种涉及激子的氧化还原机制)相结合来提高能源效率,以规避通常与纳米级电荷载流子传输相关的能量损失。尽管有这些优点,但关键挑战仍然存在,即对分子水平的结构-功能基序关系的理解有限,以及缺乏分子组装体来实现整体自然光合作用模拟所需的多功能基序。