Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bacteriophage-like Nanobiocatalysts with Spiky Topography and Dual-Atom Sites for Treating Drug-Resistant Bacteria
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsnano.4c07406 Xizheng Wu 1, 2 , Zhenyu Xing 1 , Haoju Huang 1 , Zhiying Ding 1 , Yang Gao 3 , Mohsen Adeli 4, 5 , Lang Ma 3 , Tian Ma 1 , Chong Cheng 1, 6 , Changsheng Zhao 1
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-12 , DOI: 10.1021/acsnano.4c07406 Xizheng Wu 1, 2 , Zhenyu Xing 1 , Haoju Huang 1 , Zhiying Ding 1 , Yang Gao 3 , Mohsen Adeli 4, 5 , Lang Ma 3 , Tian Ma 1 , Chong Cheng 1, 6 , Changsheng Zhao 1
Affiliation
Overuse of antibiotics leads to the proliferation of drug-resistant bacterial strains, worsening global morbidity, and mortality rates. Bioinspired nanomaterials present a promising avenue for developing nonantibiotic strategies against drug-resistant bacteria. Here, we engineer a bacteriophage-inspired artificial nanobiocatalyst via nonstoichiometric W18O49 that features a spiky topography and synergistic dual-atom sites for combating drug-resistant bacterial infection. Benefiting from the strong interaction within the synergistic Fe–O–Mo sites, the synthesized spiky artificial nanobiocatalyst exhibits superior reactive oxygen species (ROS)-catalytic activity, attributed to the regulated adsorption affinity between the reaction intermediates and catalytic sites. The experimental and theoretical investigations demonstrate that the bioinspired biocatalyst can effectively capture and kill bacteria through its spiky morphology and potent ROS-catalytic activity, which can enable a significant reduction in bacterial viability through downregulating genes associated with biosynthesis, cellular maintenance, and respiration. In vivo experiments demonstrate that the spiky artificial biocatalyst accelerates the reconstruction of drug-resistant bacteria-infected skin wounds in rabbits, exhibiting efficacy comparable to that of vancomycin. It is expected that this bioinspired study on spiky artificial nanobiocatalysts offers a straightforward path to facilitate the development of both bionic and nonantibiotic disinfection strategies.
中文翻译:
具有尖峰形貌和双原子位点的噬菌体样纳米生物催化剂用于治疗耐药细菌
抗生素的过度使用导致耐药菌株的扩散,导致全球发病率和死亡率恶化。仿生纳米材料为开发针对耐药细菌的非抗生素策略提供了一条有前途的途径。在这里,我们通过非化学计量的 W 18 O 49设计了一种受噬菌体启发的人造纳米生物催化剂,其具有尖峰形貌和协同双原子位点,可对抗耐药细菌感染。受益于协同 Fe-O-Mo 位点内的强相互作用,合成的尖刺人工纳米生物催化剂表现出优异的活性氧 (ROS) 催化活性,这归因于反应中间体和催化位点之间调节的吸附亲和力。实验和理论研究表明,仿生生物催化剂可以通过其尖峰形态和强大的ROS催化活性有效捕获和杀死细菌,从而通过下调与生物合成、细胞维持和呼吸相关的基因来显着降低细菌的活力。体内实验表明,这种尖刺人工生物催化剂可以加速兔子耐药菌感染皮肤伤口的重建,其功效与万古霉素相当。预计这项关于尖刺人工纳米生物催化剂的仿生研究为促进仿生和非抗生素消毒策略的发展提供了一条直接的途径。
更新日期:2024-09-12
中文翻译:
具有尖峰形貌和双原子位点的噬菌体样纳米生物催化剂用于治疗耐药细菌
抗生素的过度使用导致耐药菌株的扩散,导致全球发病率和死亡率恶化。仿生纳米材料为开发针对耐药细菌的非抗生素策略提供了一条有前途的途径。在这里,我们通过非化学计量的 W 18 O 49设计了一种受噬菌体启发的人造纳米生物催化剂,其具有尖峰形貌和协同双原子位点,可对抗耐药细菌感染。受益于协同 Fe-O-Mo 位点内的强相互作用,合成的尖刺人工纳米生物催化剂表现出优异的活性氧 (ROS) 催化活性,这归因于反应中间体和催化位点之间调节的吸附亲和力。实验和理论研究表明,仿生生物催化剂可以通过其尖峰形态和强大的ROS催化活性有效捕获和杀死细菌,从而通过下调与生物合成、细胞维持和呼吸相关的基因来显着降低细菌的活力。体内实验表明,这种尖刺人工生物催化剂可以加速兔子耐药菌感染皮肤伤口的重建,其功效与万古霉素相当。预计这项关于尖刺人工纳米生物催化剂的仿生研究为促进仿生和非抗生素消毒策略的发展提供了一条直接的途径。