Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Heteroatom Immobilization Engineering toward High-Performance Metal Anodes
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-11 , DOI: 10.1021/acsnano.4c08831 Jianan Gu 1 , Yongzheng Zhang 2 , Yu Shi 3 , Yilong Jin 1 , Hao Chen 3 , Xin Sun 1 , Yanhong Wang 1 , Liang Zhan 2 , Zhiguo Du 3 , Shubin Yang 3 , Meicheng Li 1
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-11 , DOI: 10.1021/acsnano.4c08831 Jianan Gu 1 , Yongzheng Zhang 2 , Yu Shi 3 , Yilong Jin 1 , Hao Chen 3 , Xin Sun 1 , Yanhong Wang 1 , Liang Zhan 2 , Zhiguo Du 3 , Shubin Yang 3 , Meicheng Li 1
Affiliation
Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.
中文翻译:
高性能金属阳极的杂原子固定化工程
杂原子固定工程(HAIE)正在成为材料科学和工程的前沿方法,专注于异构系统内原子级相互作用的精确控制和操纵。 HAIE 已成为一种制造单原子位点以提高金属基电池性能的有效策略。尽管通过 HAIE 在金属基电池的金属阳极方面取得了重大进展,但仍然存在金属枝晶、副反应和反应动力学缓慢等一些关键挑战。在这篇综述中,我们深入研究了金属阳极中杂原子固定工程的基本原理,旨在阐明其在增强电池电化学性能方面的作用。我们系统地研究了HAIE如何促进阳极中金属的均匀成核,HAIE如何抑制金属阳极-电解质界面的副反应,以及HAIE在促进金属离子去溶剂化和加速金属基电池内反应动力学中的作用。最后,我们讨论了在电极材料中实现 HAIE 的各种策略,例如高温热解、空位减少以及熔盐蚀刻和锚定。这些策略包括选择合适的杂原子、优化固定方法和构建材料结构。它们可用于进一步改进性能,以增强 HAIE 的能力,并促进其在下一代金属基电池技术中的广泛应用。
更新日期:2024-09-11
中文翻译:
高性能金属阳极的杂原子固定化工程
杂原子固定工程(HAIE)正在成为材料科学和工程的前沿方法,专注于异构系统内原子级相互作用的精确控制和操纵。 HAIE 已成为一种制造单原子位点以提高金属基电池性能的有效策略。尽管通过 HAIE 在金属基电池的金属阳极方面取得了重大进展,但仍然存在金属枝晶、副反应和反应动力学缓慢等一些关键挑战。在这篇综述中,我们深入研究了金属阳极中杂原子固定工程的基本原理,旨在阐明其在增强电池电化学性能方面的作用。我们系统地研究了HAIE如何促进阳极中金属的均匀成核,HAIE如何抑制金属阳极-电解质界面的副反应,以及HAIE在促进金属离子去溶剂化和加速金属基电池内反应动力学中的作用。最后,我们讨论了在电极材料中实现 HAIE 的各种策略,例如高温热解、空位减少以及熔盐蚀刻和锚定。这些策略包括选择合适的杂原子、优化固定方法和构建材料结构。它们可用于进一步改进性能,以增强 HAIE 的能力,并促进其在下一代金属基电池技术中的广泛应用。