当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complexity equals anything can grow forever in de Sitter space
Physical Review D ( IF 4.6 ) Pub Date : 2024-09-12 , DOI: 10.1103/physrevd.110.066009
Sergio E. Aguilar-Gutierrez 1 , Michal P. Heller 2 , Silke Van der Schueren 2
Affiliation  

Recent developments in anti–de Sitter holography point towards the association of an infinite class of covariant objects, the simplest one being codimension-one extremal volumes, with quantum computational complexity in the microscopic description. One of the defining features of these gravitational complexity proposals is describing the persistent growth of black hole interior in classical gravity. It is tempting to assume that the gravitational complexity proposals apply also to gravity outside their native anti–de Sitter setting in which case they may reveal new truths about these cases with much less understood microscopics. Recent first steps in this direction in de Sitter static patch demonstrated a very different behavior from anti–de Sitter holography deemed hyperfast growth; diverging complexification rate after a finite time. We show that this feature is not a necessity and among gravitational complexity proposals there are ones, that predict linear or exponential late-time growth behaviors for complexity in de Sitter static patches persisting classically forever.

中文翻译:


复杂性等于任何东西都可以在德西特空间中永远生长



反德西特全息术的最新发展指向无限类协变物体的关联,最简单的是余维一极值体积,在微观描述中具有量子计算复杂性。这些引力复杂性提议的定义特征之一是描述经典引力中黑洞内部的持续增长。人们很容易认为,引力复杂性提议也适用于其原生反德西特环境之外的引力,在这种情况下,它们可能会用不太了解的显微镜揭示这些情况的新真相。最近,德西特静态补丁朝这个方向迈出的第一步展示了与被认为超快速增长的反德西特全息术截然不同的行为;有限时间后复杂化率发散。我们表明,这个特征不是必需的,并且在引力复杂性建议中,有一些建议可以预测德西特静态斑块中经典永远存在的复杂性的线性或指数后期增长行为。
更新日期:2024-09-12
down
wechat
bug