当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Brain-wide dynamics linking sensation to action during decision-making
Nature ( IF 50.5 ) Pub Date : 2024-09-11 , DOI: 10.1038/s41586-024-07908-w
Andrei Khilkevich 1 , Michael Lohse 1 , Ryan Low 1 , Ivana Orsolic 1 , Tadej Bozic 1 , Paige Windmill 1 , Thomas D Mrsic-Flogel 1
Affiliation  

Perceptual decisions rely on learned associations between sensory evidence and appropriate actions, involving the filtering and integration of relevant inputs to prepare and execute timely responses1,2. Despite the distributed nature of task-relevant representations3,4,5,6,7,8,9,10, it remains unclear how transformations between sensory input, evidence integration, motor planning and execution are orchestrated across brain areas and dimensions of neural activity. Here we addressed this question by recording brain-wide neural activity in mice learning to report changes in ambiguous visual input. After learning, evidence integration emerged across most brain areas in sparse neural populations that drive movement-preparatory activity. Visual responses evolved from transient activations in sensory areas to sustained representations in frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling parallel evidence accumulation. In areas that accumulate evidence, shared population activity patterns encode visual evidence and movement preparation, distinct from movement-execution dynamics. Activity in movement-preparatory subspace is driven by neurons integrating evidence, which collapses at movement onset, allowing the integration process to reset. Across premotor regions, evidence-integration timescales were independent of intrinsic regional dynamics, and thus depended on task experience. In summary, learning aligns evidence accumulation to action preparation in activity dynamics across dozens of brain regions. This leads to highly distributed and parallelized sensorimotor transformations during decision-making. Our work unifies concepts from decision-making and motor control fields into a brain-wide framework for understanding how sensory evidence controls actions.



中文翻译:


在决策过程中将感觉与行动联系起来的全脑动力学



感知决策依赖于感官证据和适当行动之间的学习关联,包括过滤和整合相关输入,以准备和执行及时的反应1,2。尽管任务相关表示3、4、5、6、7、8、9、10 具有分布式性质,但目前尚不清楚感觉输入、证据整合、运动规划和执行之间的转换是如何跨大脑区域和神经活动维度编排的。在这里,我们通过记录小鼠学习报告模棱两可视觉输入变化的大脑范围的神经活动来解决这个问题。学习后,在驱动运动准备活动的稀疏神经种群的大多数大脑区域都出现了证据整合。视觉反应从感觉区域的短暂激活演变为额叶运动皮层、丘脑、基底神经节、中脑和小脑的持续表现,从而实现平行的证据积累。在积累证据的领域,共享的种群活动模式编码视觉证据和运动准备,与运动执行动力学不同。运动准备子空间中的活动由神经元整合证据驱动,这些证据在运动开始时崩溃,允许整合过程重置。在前运动区域,证据整合时间尺度独立于内在的区域动态,因此取决于任务经验。总之,学习将证据积累与数十个大脑区域活动动态中的行动准备保持一致。这导致决策过程中高度分布式和并行化的感觉运动转换。 我们的工作将决策和运动控制领域的概念统一到一个全脑框架中,以理解感官证据如何控制行为。

更新日期:2024-09-12
down
wechat
bug