当前位置:
X-MOL 学术
›
Annu. Rev. Fluid Mech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Instabilities and Mixing in Inertial Confinement Fusion
Annual Review of Fluid Mechanics ( IF 25.4 ) Pub Date : 2024-09-11 , DOI: 10.1146/annurev-fluid-022824-110008 Ye Zhou 1 , James D. Sadler 1 , Omar A. Hurricane 1
Annual Review of Fluid Mechanics ( IF 25.4 ) Pub Date : 2024-09-11 , DOI: 10.1146/annurev-fluid-022824-110008 Ye Zhou 1 , James D. Sadler 1 , Omar A. Hurricane 1
Affiliation
By imploding fuel of hydrogen isotopes, inertial confinement fusion (ICF) aims to create conditions that mimic those in the Sun's core. This is fluid dynamics in an extreme regime, with the ultimate goal of making nuclear fusion a viable clean energy source. The fuel must be reliably and symmetrically compressed to temperatures exceeding 100 million degrees Celsius. After the best part of a century of research, the foremost fusion milestone was reached in 2021, when ICF became the first technology to achieve an igniting fusion fuel (thermonuclear instability), and then in 2022 scientific energy breakeven was attained. A key trade-off of the ICF platform is that greater fuel compression leads to higher burn efficiency, but at the expense of amplified Rayleigh–Taylor and Richtmyer–Meshkov instabilities and kinetic-energy-wasting asymmetries. In extreme cases, these three-dimensional instabilities can completely break up the implosion. Even in the highest-yielding 2022 scientific breakeven experiment, high-atomic-number (high-Z) contaminants were unintentionally injected into the fuel. Here we review the pivotal role that fluid dynamics plays in the construction of a stable implosion and the decades of improved understanding and isolated experiments that have contributed to fusion ignition.
中文翻译:
惯性约束聚变中的不稳定性和混合
惯性约束聚变 (ICF) 通过氢同位素燃料的内爆,旨在创造类似于太阳核心的条件。这是极端状态下的流体动力学,最终目标是使核聚变成为可行的清洁能源。燃料必须可靠且对称地压缩到超过 1 亿摄氏度的温度。经过一个世纪的研究,最重要的聚变里程碑在 2021 年达到,当时 ICF 成为第一个实现点火聚变燃料(热核不稳定性)的技术,然后在 2022 年实现了科学能量收支平衡。ICF 平台的一个关键权衡是,更大的燃料压缩会导致更高的燃烧效率,但以放大的 Rayleigh-Taylor 和 Richtmyer-Meshkov 不稳定性以及动能浪费不对称为代价。在极端情况下,这些三维不稳定性可以完全打破内爆。即使在 2022 年产量最高的科学收支平衡实验中,高原子数 (high-Z) 污染物也被无意中注入燃料中。在这里,我们回顾了流体动力学在构建稳定内爆中发挥的关键作用,以及几十年来对聚变点火的理解和改进的孤立实验。
更新日期:2024-09-11
中文翻译:
惯性约束聚变中的不稳定性和混合
惯性约束聚变 (ICF) 通过氢同位素燃料的内爆,旨在创造类似于太阳核心的条件。这是极端状态下的流体动力学,最终目标是使核聚变成为可行的清洁能源。燃料必须可靠且对称地压缩到超过 1 亿摄氏度的温度。经过一个世纪的研究,最重要的聚变里程碑在 2021 年达到,当时 ICF 成为第一个实现点火聚变燃料(热核不稳定性)的技术,然后在 2022 年实现了科学能量收支平衡。ICF 平台的一个关键权衡是,更大的燃料压缩会导致更高的燃烧效率,但以放大的 Rayleigh-Taylor 和 Richtmyer-Meshkov 不稳定性以及动能浪费不对称为代价。在极端情况下,这些三维不稳定性可以完全打破内爆。即使在 2022 年产量最高的科学收支平衡实验中,高原子数 (high-Z) 污染物也被无意中注入燃料中。在这里,我们回顾了流体动力学在构建稳定内爆中发挥的关键作用,以及几十年来对聚变点火的理解和改进的孤立实验。