Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mapping the Sun’s coronal magnetic field using the Zeeman effect
Science Advances ( IF 11.7 ) Pub Date : 2024-09-11 , DOI: 10.1126/sciadv.adq1604 Thomas A Schad 1 , Gordon J D Petrie 2 , Jeffrey R Kuhn 3 , Andre Fehlmann 1 , Thomas Rimmele 2 , Alexandra Tritschler 2 , Friedrich Woeger 2 , Isabelle Scholl 1 , Rebecca Williams 4 , David Harrington 1 , Alin R Paraschiv 2 , Judit Szente 5
Science Advances ( IF 11.7 ) Pub Date : 2024-09-11 , DOI: 10.1126/sciadv.adq1604 Thomas A Schad 1 , Gordon J D Petrie 2 , Jeffrey R Kuhn 3 , Andre Fehlmann 1 , Thomas Rimmele 2 , Alexandra Tritschler 2 , Friedrich Woeger 2 , Isabelle Scholl 1 , Rebecca Williams 4 , David Harrington 1 , Alin R Paraschiv 2 , Judit Szente 5
Affiliation
Regular remote sensing of the magnetic field embedded within the million-degree solar corona is severely lacking. This reality impedes fundamental investigations of the nature of coronal heating, the generation of solar and stellar winds, and the impulsive release of energy into the solar system via flares and other eruptive phenomena. Resulting from advancements in large aperture solar coronagraphy, we report unprecedented maps of polarized spectra emitted at 1074 nm by Fe +12 atoms in the active corona. We detect clear signatures of the Zeeman effect that are produced by the coronal magnetic field along the optically thin path length of its formation. Our comparisons with global magnetohydrodynamic models highlight the valuable constraints that these measurements provide for coronal modeling efforts, which are anticipated to yield subsequent benefits for space weather research and forecasting.
中文翻译:
使用塞曼效应绘制太阳的日冕磁场
对嵌入在百万度太阳日冕中的磁场的定期遥感严重缺乏。这一现实阻碍了对日冕加热性质、太阳风和恒星风的产生以及通过耀斑和其他喷发现象向太阳系冲动释放能量的基本研究。得益于大孔径太阳日冕学的进步,我们报告了活性日冕中 Fe +12 原子在 1074 nm 处发射的前所未有的偏振光谱图。我们检测到塞曼效应的明显特征,这些特征是由日冕磁场沿着其形成的光学薄路径长度产生的。我们与全球磁流体动力学模型的比较突出了这些测量为日冕建模工作提供的宝贵约束,预计这将为空间天气研究和预报带来后续的好处。
更新日期:2024-09-11
中文翻译:
使用塞曼效应绘制太阳的日冕磁场
对嵌入在百万度太阳日冕中的磁场的定期遥感严重缺乏。这一现实阻碍了对日冕加热性质、太阳风和恒星风的产生以及通过耀斑和其他喷发现象向太阳系冲动释放能量的基本研究。得益于大孔径太阳日冕学的进步,我们报告了活性日冕中 Fe +12 原子在 1074 nm 处发射的前所未有的偏振光谱图。我们检测到塞曼效应的明显特征,这些特征是由日冕磁场沿着其形成的光学薄路径长度产生的。我们与全球磁流体动力学模型的比较突出了这些测量为日冕建模工作提供的宝贵约束,预计这将为空间天气研究和预报带来后续的好处。