Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Glass nano/micron pipette-based ion current rectification sensing technology for single cell/in vivo analysis
Analyst ( IF 3.6 ) Pub Date : 2024-09-12 , DOI: 10.1039/d4an00899e Wei Yi , Junxiong Xiao , Zhenyu Shi , Changbo Zhang , Lanhua Yi , Yebo Lu , Xingzhu Wang
Analyst ( IF 3.6 ) Pub Date : 2024-09-12 , DOI: 10.1039/d4an00899e Wei Yi , Junxiong Xiao , Zhenyu Shi , Changbo Zhang , Lanhua Yi , Yebo Lu , Xingzhu Wang
Glass nano/micron pipettes, owing to their easy preparation, unique confined space at the tip, and modifiable inner surface of the tip, can capture the ion current signal caused by a single entity, making them widely used in the construction of highly sensitive and highly selective electrochemical sensors for single entity analysis. Compared with other solid-state nanopores, their conical nano-tip causes less damage to cells when inserted into them, thereby becoming a powerful tool for the in situ analysis of important substances in cells. However, glass nanopipettes have some shortcomings, such as poor mechanical properties, difficulty in precise preparation (aperture less than 50 nm), and easy blockage during complex real sample detection, limiting their practicability. Therefore, in recent years, researchers have conducted a series of studies on glass micropipettes. Ionic current rectification technology is a novel electrochemical analysis technique. Compared with traditional electrochemical analysis methods, it does not generate redox products during the detection process; therefore, it can not only be used for the determination of non-electrochemically active substances, but also causes less damage to the cell/living body in situ analysis, becoming a powerful analysis technology for the in situ analysis of cells/in vivo in recent years. In this review, we summarize the preparation and functionalization of glass nano/micron pipettes and introduce the sensing mechanisms of two electrochemical sensing platforms constructed using glass nano/micron pipette-based ion current rectification sensing technology as well as their applications in single cell/in vivo analysis, existing problems, and future prospects.
中文翻译:
用于单细胞/体内分析的基于玻璃纳米/微米移液器的离子电流整流传感技术
玻璃纳米/微米移液器由于其易于制备、尖端独特的有限空间以及可修改的尖端内表面,可以捕获单个实体引起的离子电流信号,使其广泛应用于构建高灵敏度和用于单一实体分析的高选择性电化学传感器。与其他固态纳米孔相比,其圆锥形纳米尖端插入细胞时对细胞造成的损伤较小,从而成为原位分析细胞内重要物质的有力工具。然而,玻璃纳米移液器存在机械性能较差、难以精确制备(孔径小于50 nm)、复杂真实样品检测时易堵塞等缺点,限制了其实用性。因此,近年来,研究人员对玻璃微量移液器进行了一系列的研究。离子电流整流技术是一种新颖的电化学分析技术。与传统电化学分析方法相比,检测过程中不产生氧化还原产物;因此,它不仅可以用于非电化学活性物质的测定,而且对细胞/活体原位分析损伤较小,成为近年来细胞/活体原位分析的有力分析技术。年。 在这篇综述中,我们总结了玻璃纳米/微米移液器的制备和功能化,并介绍了使用基于玻璃纳米/微米移液器的离子电流整流传感技术构建的两种电化学传感平台的传感机制及其在单电池/中的应用。 vivo分析、存在的问题以及未来的展望。
更新日期:2024-09-12
中文翻译:
用于单细胞/体内分析的基于玻璃纳米/微米移液器的离子电流整流传感技术
玻璃纳米/微米移液器由于其易于制备、尖端独特的有限空间以及可修改的尖端内表面,可以捕获单个实体引起的离子电流信号,使其广泛应用于构建高灵敏度和用于单一实体分析的高选择性电化学传感器。与其他固态纳米孔相比,其圆锥形纳米尖端插入细胞时对细胞造成的损伤较小,从而成为原位分析细胞内重要物质的有力工具。然而,玻璃纳米移液器存在机械性能较差、难以精确制备(孔径小于50 nm)、复杂真实样品检测时易堵塞等缺点,限制了其实用性。因此,近年来,研究人员对玻璃微量移液器进行了一系列的研究。离子电流整流技术是一种新颖的电化学分析技术。与传统电化学分析方法相比,检测过程中不产生氧化还原产物;因此,它不仅可以用于非电化学活性物质的测定,而且对细胞/活体原位分析损伤较小,成为近年来细胞/活体原位分析的有力分析技术。年。 在这篇综述中,我们总结了玻璃纳米/微米移液器的制备和功能化,并介绍了使用基于玻璃纳米/微米移液器的离子电流整流传感技术构建的两种电化学传感平台的传感机制及其在单电池/中的应用。 vivo分析、存在的问题以及未来的展望。