当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sequence-Dependent Single-Molecule DNA Sensing Using Covalent Organic Framework Nanopores
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-11 , DOI: 10.1021/acsnano.4c09848
Linru Guo 1 , Xiao-Lei Xing 1, 2 , Qiaobo Liao 1 , Haocheng Xu 1 , Wang Li 1 , Xin-Lei Ding 1 , Xing-Hua Xia 1 , Li Na Ji 3 , Kai Xi 1 , Kang Wang 1
Affiliation  

Enzyme-free single-molecule sequencing has the potential to significantly expand the application of nanopore technology to DNA, proteins, and saccharides. Despite their advantages over biological nanopores and natural suitability for enzyme-free single-molecule sequencing, conventional solid-state nanopores have not yet achieved single-molecule DNA sequencing. The biggest challenge for the accuracy of single-molecule sequencing using solid-state nanopores lies in the precise control of the pore size and conformity. In this study, we fabricated nanopore devices by covering the tip of a quartz nanopipette with ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (pore size ≈ 1.1 nm). The size of the periodically arranged nanopores in COF is comparable to that of protein nanopores, and the structure of each COF nanopore is consistent at the atomic scale. The COF nanopore device could roughly distinguish dAMP, dCMP, dGMP, and dTMP. Furthermore, a certain percentage of the current blockades originating from 150 nucleotides model DNA molecules (13.5% for dA50dC50dA50 and 11.1% for dC50dA50dC50) show distinct DNA sequence-specific concave and convex resistive current patterns. The finite element simulation confirmed that the current blockade pattern of a DNA molecule passing through a COF nanopore is dependent on the relative location of the nanopore with respect to the wall of the nanopipette. Our study is a significant step toward single-molecule DNA sequencing by solid-state nanopores.

中文翻译:


使用共价有机框架纳米孔的序列依赖性单分子 DNA 传感



无酶单分子测序有可能显着扩展纳米孔技术在 DNA、蛋白质和糖类中的应用。尽管传统的固态纳米孔比生物纳米孔具有优势并且天然适合无酶单分子测序,但它尚未实现单分子DNA测序。使用固态纳米孔进行单分子测序准确性的最大挑战在于孔径和一致性的精确控制。在这项研究中,我们通过用超薄二维(2D)共价有机框架(COF)纳米片(孔径约1.1 nm)覆盖石英纳米移液器的尖端来制造纳米孔器件。 COF中周期性排列的纳米孔的尺寸与蛋白质纳米孔相当,并且每个COF纳米孔的结构在原子尺度上是一致的。 COF纳米孔装置可以大致区分dAMP、dCMP、dGMP和dTMP。此外,源自 150 个核苷酸模型 DNA 分子的电流阻断的一定百分比(dA 50 dC 50 dA 50为 13.5%,dC 50 dA 50 dC 50为 11.1%)显示出不同的 DNA 序列特异性凹凸电阻电流模式。有限元模拟证实,当前 DNA 分子通过 COF 纳米孔的封锁模式取决于纳米孔相对于纳米移液管壁的相对位置。我们的研究是迈向固态纳米孔单分子 DNA 测序的重要一步。
更新日期:2024-09-11
down
wechat
bug