当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Numerical Investigation of the Quantum Inverse Algorithm on Small Molecules
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-11 , DOI: 10.1021/acs.jctc.4c00483 Mauro Cainelli 1 , Reo Baba 1 , Yuki Kurashige 1, 2, 3
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-09-11 , DOI: 10.1021/acs.jctc.4c00483 Mauro Cainelli 1 , Reo Baba 1 , Yuki Kurashige 1, 2, 3
Affiliation
We evaluate the accuracy of the quantum inverse (Q-Inv) algorithm, in which the multiplication of Ĥ–k to the reference wave function is replaced by the Fourier transformed multiplication of e–iλĤ, as a function of the integration parameters and the iteration power k for various systems, including H2, LiH, BeH2 and the notorious H4 molecule at square geometry. We further consider the possibility of employing the Gaussian-quadrature rule as an alternate integration method and compared it to the results employing trapezoidal integration. The Q-Inv algorithm is compared to the inverse iteration method using the Ĥ–1 inverse (I-Iter) and the exact inverse by lower-upper decomposition. Energy values are evaluated as the expectation values of the Hamiltonian. Results suggest that the Q-Inv method provides lower energy results than the I-Iter method up to a certain k, after which the energy increases due to errors in the numerical integration that are dependent on the integration interval. A combined Gaussian-quadrature and trapezoidal integration method proved to be more effective at reaching convergence while decreasing the number of operations. For systems like H4, in which the Q-Inv cannot reach the expected error threshold, we propose a combination of Q-Inv and I-Iter methods to further decrease the error with k at lower computational cost. Finally, we summarize the recommended procedure when treating unknown systems.
中文翻译:
小分子量子逆算法的数值研究
我们评估了量子逆 (Q-Inv) 算法的准确性,其中Ĥ – k与参考波函数的乘法被 e –iλ Ĥ的傅里叶变换乘法所取代,作为积分参数和各种系统的迭代幂k ,包括 H 2 、LiH、BeH 2和臭名昭著的方形几何分子 H 4 。我们进一步考虑采用高斯求积规则作为替代积分方法的可能性,并将其与采用梯形积分的结果进行比较。将 Q-Inv 算法与使用Ĥ –1逆 (I-Iter) 的逆迭代方法以及通过下-上分解的精确逆进行比较。能量值被评估为哈密顿量的期望值。结果表明,在一定k范围内,Q-Inv 方法提供的能量结果比 I-Iter 方法低,此后能量由于取决于积分间隔的数值积分误差而增加。事实证明,高斯求积和梯形积分相结合的方法可以更有效地实现收敛,同时减少运算次数。对于像 H 4这样的系统,Q-Inv 无法达到预期的误差阈值,我们提出了 Q-Inv 和 I-Iter 方法的组合,以较低的计算成本进一步减少k的误差。最后,我们总结了处理未知系统时推荐的程序。
更新日期:2024-09-11
中文翻译:
小分子量子逆算法的数值研究
我们评估了量子逆 (Q-Inv) 算法的准确性,其中Ĥ – k与参考波函数的乘法被 e –iλ Ĥ的傅里叶变换乘法所取代,作为积分参数和各种系统的迭代幂k ,包括 H 2 、LiH、BeH 2和臭名昭著的方形几何分子 H 4 。我们进一步考虑采用高斯求积规则作为替代积分方法的可能性,并将其与采用梯形积分的结果进行比较。将 Q-Inv 算法与使用Ĥ –1逆 (I-Iter) 的逆迭代方法以及通过下-上分解的精确逆进行比较。能量值被评估为哈密顿量的期望值。结果表明,在一定k范围内,Q-Inv 方法提供的能量结果比 I-Iter 方法低,此后能量由于取决于积分间隔的数值积分误差而增加。事实证明,高斯求积和梯形积分相结合的方法可以更有效地实现收敛,同时减少运算次数。对于像 H 4这样的系统,Q-Inv 无法达到预期的误差阈值,我们提出了 Q-Inv 和 I-Iter 方法的组合,以较低的计算成本进一步减少k的误差。最后,我们总结了处理未知系统时推荐的程序。