当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism Exploration of the Photoelectrochemical Immunoassay for the Integration of Radical Generation with Self-Quenching
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-09-10 , DOI: 10.1021/acs.analchem.4c04050 Haiyang Wang 1 , Juan Tang 2 , Xinyu Wan 1 , Xin Wang 1 , Yongyi Zeng 3 , Xiaolong Liu 3 , Dianping Tang 1
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-09-10 , DOI: 10.1021/acs.analchem.4c04050 Haiyang Wang 1 , Juan Tang 2 , Xinyu Wan 1 , Xin Wang 1 , Yongyi Zeng 3 , Xiaolong Liu 3 , Dianping Tang 1
Affiliation
Photoelectrochemical (PEC) sensing mechanisms based on enzyme-catalyzed strategies primarily achieve the quantitative analysis of biomolecules through the enhancement or attenuation of photocurrent signals. However, there are still no reports that delve into the principles of photocurrent signaling conversion in the reaction between photoactive materials and the biomolecules. In this work, we demonstrated that indium oxysulfide InOS-0.5 heterojunction has excellent peroxidase activity to catalyze the reaction of H2O2-generated hydroxyl radicals (•OH) with the self-generated electrons, thereby resulting in synergistic quenching of the photocurrent signal. Based on the above principles, we coupled InOS-0.5 with a sandwich-type immunoassay to introduce H2O2 production catalyzed by glucose oxidase for the development of a PEC immunosensing platform. H2O2 reacted with InOS-0.5 to produce •OH with strong oxidizing properties, thus quenching the photogenerated electrons and realizing the PEC detection of the carcinoembryonic antigen (CEA, as a model analyte). The photocurrent intensity decreases with the logarithmic increase in CEA concentration (0.02–50 ng mL–1), with a remarkable limit of detection of 8.9 pg mL–1 (S/N = 3). This study further investigates the mechanism of hydrogen peroxide-induced photocurrent quenching, providing deeper insights into the mechanisms of electron–hole transport in hollow porous semiconductor materials and paving the way for the development of efficient PEC sensors.
中文翻译:
自由基产生与自猝灭相结合的光电化学免疫分析机制探索
基于酶催化策略的光电化学(PEC)传感机制主要通过光电流信号的增强或衰减来实现生物分子的定量分析。然而,目前还没有深入研究光敏材料与生物分子反应中光电流信号转换原理的报道。在这项工作中,我们证明了硫氧化铟InOS-0.5异质结具有优异的过氧化物酶活性,可以催化H 2 O 2产生的羟基自由基( · OH)与自生电子的反应,从而导致光电流信号的协同猝灭。基于上述原理,我们将InOS-0.5与夹心式免疫分析相结合,引入葡萄糖氧化酶催化H 2 O 2 的产生,用于开发PEC免疫传感平台。 H 2 O 2与InOS-0.5反应生成具有强氧化性的· OH,从而猝灭光生电子,实现癌胚抗原(CEA,作为模型分析物)的PEC检测。光电流强度随着 CEA 浓度 (0.02–50 ng mL –1 ) 对数增加而降低,检测限显着为 8.9 pg mL –1 (S/N = 3)。本研究进一步研究了过氧化氢诱导的光电流猝灭机制,为中空多孔半导体材料中电子-空穴传输机制提供了更深入的见解,并为高效PEC传感器的开发铺平了道路。
更新日期:2024-09-10
中文翻译:
自由基产生与自猝灭相结合的光电化学免疫分析机制探索
基于酶催化策略的光电化学(PEC)传感机制主要通过光电流信号的增强或衰减来实现生物分子的定量分析。然而,目前还没有深入研究光敏材料与生物分子反应中光电流信号转换原理的报道。在这项工作中,我们证明了硫氧化铟InOS-0.5异质结具有优异的过氧化物酶活性,可以催化H 2 O 2产生的羟基自由基( · OH)与自生电子的反应,从而导致光电流信号的协同猝灭。基于上述原理,我们将InOS-0.5与夹心式免疫分析相结合,引入葡萄糖氧化酶催化H 2 O 2 的产生,用于开发PEC免疫传感平台。 H 2 O 2与InOS-0.5反应生成具有强氧化性的· OH,从而猝灭光生电子,实现癌胚抗原(CEA,作为模型分析物)的PEC检测。光电流强度随着 CEA 浓度 (0.02–50 ng mL –1 ) 对数增加而降低,检测限显着为 8.9 pg mL –1 (S/N = 3)。本研究进一步研究了过氧化氢诱导的光电流猝灭机制,为中空多孔半导体材料中电子-空穴传输机制提供了更深入的见解,并为高效PEC传感器的开发铺平了道路。