Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controllable construction of a 3D-honeycomb-like porous carbon network as a high-performance cathode for promoting Zn-ion storage capability
Nanoscale ( IF 5.8 ) Pub Date : 2024-09-11 , DOI: 10.1039/d4nr03032j Qian Li , Tongde Wang , Tie Shu , Xiaoyi Pan , Yousheng Tao
Nanoscale ( IF 5.8 ) Pub Date : 2024-09-11 , DOI: 10.1039/d4nr03032j Qian Li , Tongde Wang , Tie Shu , Xiaoyi Pan , Yousheng Tao
Inheriting the energy storage mechanism of supercapacitors and rechargeable ion batteries, zinc ion capacitors (ZICs) greatly increase their energy density at high power without sacrificing their life span. However, sluggish kinetics and insufficient active sites for Zn2+ storage induced by the significant mismatch of charge carriers with limited pore size hinder the efficient Zn2+ storage and smooth application of carbonaceous cathode materials. Herein, a three-dimensional honeycomb-like porous carbon network (HPCN) was fabricated, which can reduce the diffusion barrier for fast kinetics, produce a high-density defect area, effectively increase active sites for charge storage, and generate a high nitrogen-doping content. Benefiting from these advantages, the optimized ZICs bring out a marvelous energy/power density (130 W h kg−1/11.7 kW kg−1) with an ultrahigh reliable cyclability of 97.8% after 50 000 cycles at a high current density of 5 A g−1. Importantly, systematic ex situ characterizations combined with theoretical calculations demonstrate that the outstanding Zn2+ storage capacity is attributed to the synergistic effect of physical co-adsorption of cations and reversible chemisorption. This work presents an attractive strategy for developing advanced carbon cathodes with suitable pores and accelerates the exploration of charge storage mechanisms, which may open a new avenue for practical supercapacitors.
中文翻译:
可控构建 3D 蜂窝状多孔碳网络作为高性能阴极,用于促进锌离子存储能力
锌离子电容器 (ZIC) 继承了超级电容器和可充电离子电池的储能机制,在不牺牲使用寿命的情况下,在高功率下大大提高了其能量密度。然而,孔径有限的载流子的显着不匹配导致动力学缓慢和 Zn2+ 储存活性位点不足,阻碍了碳质正极材料的高效储存和顺利应用。在此,制备了三维蜂窝状多孔碳网络 (HPCN),该网络可以减少快速动力学的扩散势垒,产生高密度缺陷区域,有效增加电荷存储的活性位点,并产生高氮掺杂含量。得益于这些优势,优化的 ZIC 在 5 A g-1 的高电流密度下经过 50 000 次循环后,可产生惊人的能量/功率密度 (130 W h kg-1/11.7 kW kg-1),具有 97.8% 的超高可靠循环性。重要的是,系统的异位表征与理论计算相结合表明,出色的 Zn2+ 存储容量归因于阳离子的物理共吸附和可逆化学吸附的协同效应。这项工作为开发具有合适孔隙的先进碳阴极提供了一种有吸引力的策略,并加速了对电荷存储机制的探索,这可能为实用超级电容器开辟一条新途径。
更新日期:2024-09-11
中文翻译:
可控构建 3D 蜂窝状多孔碳网络作为高性能阴极,用于促进锌离子存储能力
锌离子电容器 (ZIC) 继承了超级电容器和可充电离子电池的储能机制,在不牺牲使用寿命的情况下,在高功率下大大提高了其能量密度。然而,孔径有限的载流子的显着不匹配导致动力学缓慢和 Zn2+ 储存活性位点不足,阻碍了碳质正极材料的高效储存和顺利应用。在此,制备了三维蜂窝状多孔碳网络 (HPCN),该网络可以减少快速动力学的扩散势垒,产生高密度缺陷区域,有效增加电荷存储的活性位点,并产生高氮掺杂含量。得益于这些优势,优化的 ZIC 在 5 A g-1 的高电流密度下经过 50 000 次循环后,可产生惊人的能量/功率密度 (130 W h kg-1/11.7 kW kg-1),具有 97.8% 的超高可靠循环性。重要的是,系统的异位表征与理论计算相结合表明,出色的 Zn2+ 存储容量归因于阳离子的物理共吸附和可逆化学吸附的协同效应。这项工作为开发具有合适孔隙的先进碳阴极提供了一种有吸引力的策略,并加速了对电荷存储机制的探索,这可能为实用超级电容器开辟一条新途径。