当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic structure and surface band bending of Sn-doped β−Ga2O3 thin films studied by x-ray photoemission spectroscopy and ab initio calculations
Physical Review B ( IF 3.2 ) Pub Date : 2024-09-11 , DOI: 10.1103/physrevb.110.115120
Jiaye Zhang 1 , Zhenni Yang 1, 2 , Siliang Kuang 1, 2 , Ziqi Zhang 1 , Shenglong Wei 1 , Joe Willis 3, 3, 4 , Tien-Lin Lee 4 , Piero Mazzolini 5 , Oliver Bierwagen 6 , Shanquan Chen 7 , Zuhuang Chen 7 , Duanyang Chen 8, 9 , Hongji Qi 2, 8, 9 , David Scanlon 3, 3, 10 , Kelvin H. L. Zhang 1
Affiliation  

The bulk and surface electronic structures of Sn-doped βGa2O3 thin films have been studied by soft and hard x-ray photoemission spectroscopy (soft PES at 1486.6 eV and HAXPES at 5920 eV). The experimental spectra are compared with density functional theory calculated density of states in the valence band and conduction band. Excellent agreement was found between experimental spectra and calculated density of states by taking into account the photoionization cross section of different orbitals involved in the valence and conduction bands. The electronic states derived from Ga 4s character are selectively enhanced by HAXPES. This allows us to infer that the states at the conduction band and bottom of the valence band contain pronounced Ga 4s character. The occupation of the lower conduction band in degenerately Sn-doped Ga2O3 is clearly observed by HAXPES, which allows for direct measurement of Burstein-Moss shift and band-gap renormalization as a function of Sn doping. A comparison of the valence band spectra of Sn-doped Ga2O3 films with Si-doped samples suggests that Sn doping has different effects on the electronic structure than Si doping. An in-gap electronic state is observed for Sn-doped Ga2O3, which is attributed to self-compensating Sn2+ related defects. Furthermore, a larger band-gap renormalization is found in Sn-doped samples, because the Sn 5s dopant orbital mixes strongly with the host Ga 4s derived conduction band. Finally, a comparison of the valence band and core-level spectra excited with soft and hard x rays allows us to identify an upward band bending at the surface region of Sn-doped Ga2O3 films.

中文翻译:


通过 X 射线光电子能谱和从头计算研究 Sn 掺杂 β−Ga2O3 薄膜的电子结构和表面能带弯曲



Sn掺杂的体电子结构和表面电子结构 βGa2O3 通过软和硬 X 射线光电子能谱(软 PES 为 1486.6 eV,HAXPES 为 5920 eV)研究了薄膜。将实验光谱与密度泛函理论计算的价带和导带态密度进行比较。通过考虑价带和导带中涉及的不同轨道的光电离截面,实验光谱和计算的态密度之间发现了极好的一致性。来自 Ga 的电子态 4s 性格通过 HAXPES 有选择地增强。这使我们能够推断导带和价带底部的状态包含明显的 Ga 4s 特点。简并 Sn 掺杂中较低导带的占据 Ga2O3 HAXPES 可以清楚地观察到这一点,它可以直接测量 Burstein-Moss 位移和带隙重整化作为 Sn 掺杂的函数。 Sn掺杂的价带光谱比较 Ga2O3 硅掺杂样品的薄膜表明,锡掺杂对电子结构的影响与硅掺杂不同。观察到 Sn 掺杂的带隙内电子态 Ga2O3 ,这归因于自我补偿 Sn2+ 相关缺陷。此外,在 Sn 掺杂样品中发现了更大的带隙重整化,因为 Sn 5s 掺杂剂轨道与主体 Ga 强烈混合 4s 导出的导带。最后,通过比较软和硬 X 射线激发的价带和核心能级光谱,我们可以识别 Sn 掺杂表面区域的向上能带弯曲 Ga2O3 电影。
更新日期:2024-09-11
down
wechat
bug