当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bayesian optimization of non-classical optomechanical correlations
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-09-11 , DOI: 10.1088/2058-9565/ad7169 Alexander James Gordon Pitchford , Andrey A Rakhubovsky , Rick Mukherjee , Darren William Moore , Frederic Sauvage , Daniel K Burgarth , Radim Filip , Florian Mintert
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-09-11 , DOI: 10.1088/2058-9565/ad7169 Alexander James Gordon Pitchford , Andrey A Rakhubovsky , Rick Mukherjee , Darren William Moore , Frederic Sauvage , Daniel K Burgarth , Radim Filip , Florian Mintert
Nonclassical correlations provide a resource for many applications in quantum technology as well as providing strong evidence that a system is indeed operating in the quantum regime. Optomechanical systems can be arranged to generate nonclassical correlations (such as quantum entanglement) between the mechanical mode and a mode of travelling light. Here we propose automated optimization of the production of quantum correlations in such a system, beyond what can be achieved through analytical methods, by applying Bayesian optimization to the control parameters. A two-mode optomechanical squeezing experiment is simulated using a detailed theoretical model of the system and the measurable outputs fed to the Bayesian optimization process. This then modifies the controllable parameters in order to maximize the non-classical two-mode squeezing and its detection, independently of the inner workings of the model. We focus on a levitated nano-sphere system, but the techniques described are broadly applicable in optomechanical experiments, and also more widely, especially where no detailed theoretical treatment is available. We find that in the experimentally relevant thermal regimes, the ability to vary and optimize a broad array of control parameters provides access to large values of two-mode squeezing that would otherwise be difficult or intractable to discover via analytical or trial and error methods. In particular we observe that modulation of the driving frequency around the resonant sideband allows for stronger nonclassical correlations. We also observe that our optimization approach finds parameters that allow significant squeezing in the high temperature regime. This extends the range of experimental setups in which non-classical correlations could be generated beyond the region of high quantum cooperativity.
中文翻译:
非经典光机械相关性的贝叶斯优化
非经典相关性为量子技术中的许多应用提供了资源,并提供了系统确实在量子状态下运行的有力证据。光机械系统可以被布置为在机械模式和行进光模式之间产生非经典相关性(例如量子纠缠)。在这里,我们提出通过对控制参数应用贝叶斯优化,对这样的系统中量子相关性的产生进行自动优化,超出通过分析方法可以实现的范围。使用系统的详细理论模型和输入贝叶斯优化过程的可测量输出来模拟双模式光机械挤压实验。然后修改可控参数,以便最大化非经典二模式压缩及其检测,而与模型的内部工作无关。我们专注于悬浮纳米球系统,但所描述的技术广泛适用于光机械实验,而且也更广泛,特别是在没有详细理论处理的情况下。我们发现,在实验相关的热状态中,改变和优化广泛的控制参数的能力提供了获得双模式压缩的大值的机会,否则通过分析或试错方法很难或难以发现这些值。特别是,我们观察到谐振边带周围的驱动频率的调制允许更强的非经典相关性。我们还观察到,我们的优化方法找到了允许在高温状态下进行显着挤压的参数。 这扩展了实验设置的范围,其中可以在高量子协同性区域之外生成非经典相关性。
更新日期:2024-09-11
中文翻译:
非经典光机械相关性的贝叶斯优化
非经典相关性为量子技术中的许多应用提供了资源,并提供了系统确实在量子状态下运行的有力证据。光机械系统可以被布置为在机械模式和行进光模式之间产生非经典相关性(例如量子纠缠)。在这里,我们提出通过对控制参数应用贝叶斯优化,对这样的系统中量子相关性的产生进行自动优化,超出通过分析方法可以实现的范围。使用系统的详细理论模型和输入贝叶斯优化过程的可测量输出来模拟双模式光机械挤压实验。然后修改可控参数,以便最大化非经典二模式压缩及其检测,而与模型的内部工作无关。我们专注于悬浮纳米球系统,但所描述的技术广泛适用于光机械实验,而且也更广泛,特别是在没有详细理论处理的情况下。我们发现,在实验相关的热状态中,改变和优化广泛的控制参数的能力提供了获得双模式压缩的大值的机会,否则通过分析或试错方法很难或难以发现这些值。特别是,我们观察到谐振边带周围的驱动频率的调制允许更强的非经典相关性。我们还观察到,我们的优化方法找到了允许在高温状态下进行显着挤压的参数。 这扩展了实验设置的范围,其中可以在高量子协同性区域之外生成非经典相关性。