当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronically configurable microscopic metasheet robots
Nature Materials ( IF 37.2 ) Pub Date : 2024-09-11 , DOI: 10.1038/s41563-024-02007-7
Qingkun Liu 1, 2 , Wei Wang 1, 3 , Himani Sinhmar 3 , Itay Griniasty 1 , Jason Z Kim 1 , Jacob T Pelster 3 , Paragkumar Chaudhari 4 , Michael F Reynolds 1 , Michael C Cao 5 , David A Muller 5 , Alyssa B Apsel 4 , Nicholas L Abbott 6 , Hadas Kress-Gazit 3 , Paul L McEuen 1, 7, 8 , Itai Cohen 1, 7, 8
Affiliation  

Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.



中文翻译:


电子可配置的微型元片机器人



形状变形对于微生物的运动至关重要,但在亚毫米机器人中实现这一点一直具有挑战性。通过克服与小型化相关的障碍,我们展示了微型电子可配置变形元片机器人。这些元机器人使用长达 5 个十年的剪纸结构进行局部扩展,从 10 nm 电化学驱动铰链到构成约 1 mm 机器人的 100 μm 展开面板。这些面板被组织成单元,可以在 100 毫秒内膨胀和收缩 40%。这些单元平铺形成具有 200 多个铰链和独立电子驱动区域的元片,使机器人能够在具有不同曲率分布的多个目标几何形状之间切换。通过电子驱动具有规定相位延迟的独立区域,我们生成运动步态。这些结果推进了微观、连续、兼容、可编程机器人的超材料范例,并为广泛的应用铺平了道路,包括可重构微型机器、可调谐光学超表面和小型化生物医学设备。

更新日期:2024-09-11
down
wechat
bug