Nature ( IF 50.5 ) Pub Date : 2024-09-11 , DOI: 10.1038/s41586-024-07883-2 Calder Miller 1 , Annette N Carroll 1 , Junyu Lin 1 , Henrik Hirzler 1 , Haoyang Gao 2 , Hengyun Zhou 2, 3 , Mikhail D Lukin 2 , Jun Ye 1
Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions1,2. The precise tunability3 of Ising and spin-exchange interactions with both microwave and d.c. electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics4,5,6. Here we used Floquet engineering7 to realize new quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold 40K87Rb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a d.c. electric field through observations of Ramsey contrast dynamics. This validation sets the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting8 mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in two-dimensional layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement9 or could take advantage of the rich molecular structure for quantum simulation of multi-level systems10,11.
中文翻译:
使用 Floquet 设计的带有极性分子的 XYZ 自旋模型进行两轴扭曲
限制在光学晶格中的极性分子是探索基于强长程偶极相互作用的自旋运动动力学的多功能平台1,2 。 Ising 的精确可调性3以及与微波和直流电场的自旋交换相互作用使分子系统特别适合工程复杂的多体动力学4,5,6 。在这里,我们使用 Floquet Engineering 7实现了极性分子的新型量子多体系统。使用以超冷40 K 87 Rb 分子的两个最低旋转状态编码的自旋,我们通过观察 Ramsey 对比动力学,相互验证了由 Floquet 微波脉冲序列调整的 XXZ 自旋模型与由直流电场调整的自旋模型。该验证为实现静态场无法访问的哈密顿量奠定了基础。特别是,我们观察到了两轴扭转8平均场动力学,该动力学是由 Floquet 设计的 XYZ 模型使用二维层中的流动分子生成的。未来,Floquet 设计的哈密顿量可以生成纠缠态以进行基于分子的精确测量9或可以利用丰富的分子结构进行多级系统的量子模拟10,11 。