Nature ( IF 50.5 ) Pub Date : 2024-09-11 , DOI: 10.1038/s41586-024-07921-z Timothy D Brown 1 , Alan Zhang 1 , Frederick U Nitta 1, 2 , Elliot D Grant 1 , Jenny L Chong 3 , Jacklyn Zhu 1 , Sritharini Radhakrishnan 1 , Mahnaz Islam 1, 2 , Elliot J Fuller 1 , A Alec Talin 1 , Patrick J Shamberger 3 , Eric Pop 2 , R Stanley Williams 1, 3 , Suhas Kumar 1
Any electrical signal propagating in a metallic conductor loses amplitude due to the natural resistance of the metal. Compensating for such losses presently requires repeatedly breaking the conductor and interposing amplifiers that consume and regenerate the signal. This century-old primitive severely constrains the design and performance of modern interconnect-dense chips1. Here we present a fundamentally different primitive based on semi-stable edge of chaos (EOC)2,3, a long-theorized but experimentally elusive regime that underlies active (self-amplifying) transmission in biological axons4,5. By electrically accessing the spin crossover in LaCoO3, we isolate semi-stable EOC, characterized by small-signal negative resistance and amplification of perturbations6,7. In a metallic line atop a medium biased at EOC, a signal input at one end exits the other end amplified, without passing through a separate amplifying component. While superficially resembling superconductivity, active transmission offers controllably amplified time-varying small-signal propagation at normal temperature and pressure, but requires an electrically energized EOC medium. Operando thermal mapping reveals the mechanism of amplification—bias energy of the EOC medium, instead of fully dissipating as heat, is partly used to amplify signals in the metallic line, thereby enabling spatially continuous active transmission, which could transform the design and performance of complex electronic chips.
中文翻译:
轴突样主动信号传输
由于金属的自然电阻,在金属导体中传播的任何电信号都会失去振幅。目前,补偿此类损耗需要反复断开导体并插入放大器,以消耗和再生信号。这种具有百年历史的原始结构严重制约了现代互连密集型芯片的设计和性能1。在这里,我们提出了一个基于半稳定混沌边缘 (EOC) 的根本不同的原始体2,3,这是一种长期理论化但在实验上难以捉摸的机制,是生物轴突主动(自我放大)传递的基础4,5。通过电访问 LaCoO3 中的自旋交叉,我们分离了半稳定的 EOC,其特征是小信号负电阻和扰动放大6,7。在 EOC 偏置的介质顶部的金属线中,一端的信号输入输出另一端被放大,而不通过单独的放大组件。虽然表面上类似于超导性,但主动传输在常温常压下提供可控放大的时变小信号传播,但需要通电的 EOC 介质。原位热映射揭示了放大的机制——EOC 介质的偏置能量不是以热量的形式完全消散,而是部分用于放大金属线中的信号,从而实现空间连续的主动传输,这可能会改变复杂电子芯片的设计和性能。