Nature Communications ( IF 14.7 ) Pub Date : 2024-09-11 , DOI: 10.1038/s41467-024-50793-0 Jordan J Winetrout 1, 2 , Krishan Kanhaiya 1, 2, 3 , Joshua Kemppainen 4 , Pieter J In 't Veld 5 , Geeta Sachdeva 6 , Ravindra Pandey 6 , Behzad Damirchi 7 , Adri van Duin 7 , Gregory M Odegard 4 , Hendrik Heinz 1, 2
The simulation of chemical reactions and mechanical properties including failure from atoms to the micrometer scale remains a longstanding challenge in chemistry and materials science. Bottlenecks include computational feasibility, reliability, and cost. We introduce a method for reactive molecular dynamics simulations using a clean replacement of non-reactive classical harmonic bond potentials with reactive, energy-conserving Morse potentials, called the Reactive INTERFACE Force Field (IFF-R). IFF-R is compatible with force fields for organic and inorganic compounds such as IFF, CHARMM, PCFF, OPLS-AA, and AMBER. Bond dissociation is enabled by three interpretable Morse parameters per bond type and zero energy upon disconnect. Use cases for bond breaking in molecules, failure of polymers, carbon nanostructures, proteins, composite materials, and metals are shown. The simulation of bond forming reactions is included via template-based methods. IFF-R maintains the accuracy of the corresponding non-reactive force fields and is about 30 times faster than prior reactive simulation methods.
中文翻译:
利用简谐力场在分子动力学模拟中实现反应性
化学反应和机械性能(包括从原子到微米尺度的失效)的模拟仍然是化学和材料科学中长期存在的挑战。瓶颈包括计算可行性、可靠性和成本。我们引入了一种反应性分子动力学模拟方法,使用反应性节能莫尔斯电势干净地替代非反应性经典谐波键电势,称为反应性界面力场 (IFF-R)。 IFF-R 与有机和无机化合物的力场兼容,例如 IFF、CHARMM、PCFF、OPLS-AA 和 AMBER。键解离是通过每个键类型的三个可解释的莫尔斯参数来实现的,并且断开时能量为零。显示了分子键断裂、聚合物失效、碳纳米结构、蛋白质、复合材料和金属的用例。通过基于模板的方法模拟成键反应。 IFF-R 保持了相应非反作用力场的精度,并且比之前的反作用模拟方法快约 30 倍。