Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D Printing-Induced Hierarchically Aligned Nanocomposites With Exceptional Multidirectional Strain Sensing Performance
Small ( IF 13.0 ) Pub Date : 2024-09-10 , DOI: 10.1002/smll.202404810 Yanjun Liu 1 , Zhenyu Wang 1, 2 , Xinyu Song 1 , Xi Shen 3 , Yi Wei 1 , Chenxi Hua 1 , Pengpeng Shao 1 , Daopeng Qu 1 , Jing Jiang 4 , Yu Liu 1, 2
Small ( IF 13.0 ) Pub Date : 2024-09-10 , DOI: 10.1002/smll.202404810 Yanjun Liu 1 , Zhenyu Wang 1, 2 , Xinyu Song 1 , Xi Shen 3 , Yi Wei 1 , Chenxi Hua 1 , Pengpeng Shao 1 , Daopeng Qu 1 , Jing Jiang 4 , Yu Liu 1, 2
Affiliation
High-performance sensors capable of detecting multidirectional strains are indispensable to understand the complex motions involved in flexible electronics. Conventional isotropic strain sensors can only measure uniaxial deformations or single stimuli, hindering their practical application fields. The answer to such challenge resides in the construction of engineered anisotropic sensing structures. Herein, a hierarchically aligned carbon nanofiber (CNF)/polydimethylsiloxane nanocomposite strain sensor is developed by one-step 3D printing. The precisely controlled printing path and shear flow bring about highly aligned nanocomposite filaments at macroscale and orientated CNF network within each filament at microscale. The periodically orientated nanocomposite filaments along with the inner aligned CNF network successfully control the strain distribution and the appearance of microcracks, giving rise to anisotropic structural response to external deformations. The synergetic effect of the multiscale structural design leads to distinguishable gauge factors of 164 and 0.5 for applied loadings along and transverse to the alignment direction, leading to an exceptional selectivity of 3.77. The real-world applications of the hierarchically aligned sensors in multiaxial movement detector and posture-correction device are further demonstrated. The above findings propose new ideas for manufacturing nanocomposites with engineered anisotropic structure and properties, verifying promising applications in emerging wearable electronics and soft robotics.
中文翻译:
3D 打印诱导的分层排列纳米复合材料,具有卓越的多向应变传感性能
能够检测多向应变的高性能传感器对于了解柔性电子学中涉及的复杂运动是必不可少的。传统的各向同性应变传感器只能测量单轴变形或单个刺激,阻碍了其实际应用领域。应对这一挑战的答案在于构建工程各向异性传感结构。在此,通过一步 3D 打印开发了一种分层排列的碳纳米纤维 (CNF)/聚二甲基硅氧烷纳米复合应变传感器。精确控制的打印路径和剪切流可在宏观尺度上实现高度对齐的纳米复合细丝,并在微观尺度上在每根细丝内产生定向的 CNF 网络。周期定向的纳米复合丝以及内部对齐的 CNF 网络成功地控制了应变分布和微裂纹的出现,从而对外部变形产生各向异性结构响应。多尺度结构设计的协同效应导致沿对线方向和横向施加载荷的标距系数为 164 和 0.5,从而获得 3.77 的出色选择性。进一步演示了分层对齐传感器在多轴运动检测器和姿态校正装置中的实际应用。上述发现为制造具有工程各向异性结构和性能的纳米复合材料提出了新思路,验证了在新兴可穿戴电子产品和软机器人中的前景应用。
更新日期:2024-09-10
中文翻译:
3D 打印诱导的分层排列纳米复合材料,具有卓越的多向应变传感性能
能够检测多向应变的高性能传感器对于了解柔性电子学中涉及的复杂运动是必不可少的。传统的各向同性应变传感器只能测量单轴变形或单个刺激,阻碍了其实际应用领域。应对这一挑战的答案在于构建工程各向异性传感结构。在此,通过一步 3D 打印开发了一种分层排列的碳纳米纤维 (CNF)/聚二甲基硅氧烷纳米复合应变传感器。精确控制的打印路径和剪切流可在宏观尺度上实现高度对齐的纳米复合细丝,并在微观尺度上在每根细丝内产生定向的 CNF 网络。周期定向的纳米复合丝以及内部对齐的 CNF 网络成功地控制了应变分布和微裂纹的出现,从而对外部变形产生各向异性结构响应。多尺度结构设计的协同效应导致沿对线方向和横向施加载荷的标距系数为 164 和 0.5,从而获得 3.77 的出色选择性。进一步演示了分层对齐传感器在多轴运动检测器和姿态校正装置中的实际应用。上述发现为制造具有工程各向异性结构和性能的纳米复合材料提出了新思路,验证了在新兴可穿戴电子产品和软机器人中的前景应用。