当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Asymmetric Nanobowl Confinement-Engineered “Plasmonic Storms” for Machine Learning-Assisted Ultrasensitive Immunochromatographic Assay of Pathogens
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-09-09 , DOI: 10.1021/acs.analchem.4c03417 Yuechun Li 1 , Zhaowen Cui 1 , Longhua Shi 1 , Qinyuan Bao 1 , Rui Shu 1 , Wenxin Zhu 1 , Wentao Zhang 1 , Yanwei Ji 1 , Yizhong Shen 2 , Jie Cheng 3 , Jianlong Wang 1
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-09-09 , DOI: 10.1021/acs.analchem.4c03417 Yuechun Li 1 , Zhaowen Cui 1 , Longhua Shi 1 , Qinyuan Bao 1 , Rui Shu 1 , Wenxin Zhu 1 , Wentao Zhang 1 , Yanwei Ji 1 , Yizhong Shen 2 , Jie Cheng 3 , Jianlong Wang 1
Affiliation
Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a “plasmonic storms” strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming “plasmonic storms” with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered “plasmonic storms” are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed “plasmonic storms” are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect Salmonella typhimurium with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL–1, highlighting the potential of nanoconfinement in biosensing.
中文翻译:
不对称纳米碗限制工程“等离子体风暴”用于机器学习辅助的病原体超灵敏免疫色谱分析
通过等离子体化学实现超灵敏生物传感的有效场增强效应仍然面临着巨大的挑战。在此,利用纳米限制工程积累和协同效应来开发具有高场增强效应的“等离子体风暴”策略,并利用金纳米粒子(AuNP)作为概念验证的活性位点,因为它们具有独特的局域表面等离子体共振和邻耦合电磁场。简而言之,通过原位合成策略,将大量AuNPs选择性地、精确地堆叠在碗状纳米结构的受限纳米腔中,这为这些相邻AuNPs之间的电磁场强耦合提供了空间,形成“等离子体风暴”其增强场比游离 AuNPs 高 3 个数量级。所提出的纳米约束工程“等离子体风暴”通过表面增强拉曼散射(SERS)和光热实验得到证明,并通过有限元模拟在理论上可视化。最后,所提出的“等离子体风暴”用于增强比色/SERS/光热免疫色谱分析,借助机器学习算法来检测鼠伤寒沙门氏菌,实现了142 CFU mL –1的低检测限,凸显了纳米限制的潜力在生物传感中。
更新日期:2024-09-09
中文翻译:
不对称纳米碗限制工程“等离子体风暴”用于机器学习辅助的病原体超灵敏免疫色谱分析
通过等离子体化学实现超灵敏生物传感的有效场增强效应仍然面临着巨大的挑战。在此,利用纳米限制工程积累和协同效应来开发具有高场增强效应的“等离子体风暴”策略,并利用金纳米粒子(AuNP)作为概念验证的活性位点,因为它们具有独特的局域表面等离子体共振和邻耦合电磁场。简而言之,通过原位合成策略,将大量AuNPs选择性地、精确地堆叠在碗状纳米结构的受限纳米腔中,这为这些相邻AuNPs之间的电磁场强耦合提供了空间,形成“等离子体风暴”其增强场比游离 AuNPs 高 3 个数量级。所提出的纳米约束工程“等离子体风暴”通过表面增强拉曼散射(SERS)和光热实验得到证明,并通过有限元模拟在理论上可视化。最后,所提出的“等离子体风暴”用于增强比色/SERS/光热免疫色谱分析,借助机器学习算法来检测鼠伤寒沙门氏菌,实现了142 CFU mL –1的低检测限,凸显了纳米限制的潜力在生物传感中。