当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deciphering Reactivity Factors of Cu(II)–Pd(0) Engaged in Porous Organic Polymer toward Catalytic Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-09-10 , DOI: 10.1021/acssuschemeng.4c04337 Bishal Boro, Paramita Koley, Ankita Boruah, Tayebeh Hosseinnejad, Jang Mee Lee, Chia-Che Chang, Chih-Wen Pao, Suresh Bhargava, John Mondal
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-09-10 , DOI: 10.1021/acssuschemeng.4c04337 Bishal Boro, Paramita Koley, Ankita Boruah, Tayebeh Hosseinnejad, Jang Mee Lee, Chia-Che Chang, Chih-Wen Pao, Suresh Bhargava, John Mondal
In recent years, catalytic biomass valorization has held significant promise in addressing both environmental concerns and the growing demand for sustainable chemical feedstocks. By efficiently converting biomass into valuable chemicals and fuels using catalytic processes, we can reduce reliance on fossil fuels while mitigating carbon emissions, thus fostering a more sustainable and greener economy. In this direction, there has been considerable interest among researchers in the selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (5-HMF) to produce the unique furanic scaffold 2,5-dimethylfuran (DMF). This interest stems from its symmetrical structure and widespread use as a monomer for synthesizing cross-linked polyesters and polyurethane. Emulating this perspective, we have effectively developed a cost-efficient and scalable method for synthesizing a nitrogen-enriched porous organic polymer (POP) named DAB, employing a FeCl3-assisted Friedel–Crafts alkylation condensation-polymerization technique. Moreover, a straightforward solid-phase hydrogenation approach at elevated temperatures has been utilized to produce atomically dispersed CuPd bimetallic nanospheres supported on the POP, either within or outside the cavity. These nanospheres maintain stable Cu0/2+ and Pd0/2+ active surface species, forming catalytic systems known as CuPd@DABs. The catalysts were employed for the selective hydrogenation of 5-HMF produced from biomass, yielding 81.5% selectivity of DMF under optimized reaction conditions and showing excellent activity in the transformation of HMF. The boosted activity observed in the case of CuPd@DAB-1 can be coherently attributed to the presence of Cu–Pd alloy nanospheres, which is rigorously supported by comprehensive experimental investigations. DRIFT adsorption study was performed to analyze the adsorption behavior of HMF on CuPd@DAB-1 and CuPd@DAB-2 catalysts, which demonstrated significant red shifts in the peaks of HMF for CuPd@DAB-1, indicating strong interfacial interactions, while for CuPd@DAB-2, the peaks were similar to pure HMF. These interactions are attributed to the surface-exposed Cu–Pd metal nodes in CuPd@DAB-1, leading to higher catalytic activity compared to CuPd@DAB-2. Computational investigations further unwrapped the role of synergistic Cu–Pd interactions in establishing the reaction kinetics and impacting the product activity and selectivity.
中文翻译:
解读Cu(II)-Pd(0)参与多孔有机聚合物催化5-羟甲基糠醛氢解制2,5-二甲基呋喃的反应因子
近年来,催化生物质增值在解决环境问题和对可持续化学原料日益增长的需求方面具有重大前景。通过利用催化过程有效地将生物质转化为有价值的化学品和燃料,我们可以减少对化石燃料的依赖,同时减少碳排放,从而促进更可持续和更绿色的经济。在这个方向上,研究人员对生物质衍生的 5-羟甲基糠醛 (5-HMF) 的选择性氢化以生产独特的呋喃支架 2,5-二甲基呋喃 (DMF) 产生了很大的兴趣。这种兴趣源于其对称结构和广泛用作合成交联聚酯和聚氨酯的单体。效仿这一观点,我们有效地开发了一种经济有效且可扩展的方法,采用 FeCl 3辅助的弗里德尔-克来福特烷基化缩聚技术来合成富氮多孔有机聚合物(POP)(DAB)。此外,在高温下直接固相氢化方法已被用来生产负载在POP上的原子分散的CuPd双金属纳米球,无论是在腔体内还是在腔体外。这些纳米球保持稳定的 Cu 0/2+和 Pd 0/2+活性表面物种,形成称为 CuPd@DAB 的催化系统。该催化剂用于生物质生产5-HMF的选择性加氢,在优化的反应条件下,DMF的选择性为81.5%,并且在HMF的转化中表现出优异的活性。 在 CuPd@DAB-1 的情况下观察到的活性增强可以一致地归因于 Cu-Pd 合金纳米球的存在,这一点得到了综合实验研究的严格支持。通过 DRIFT 吸附研究分析了 HMF 在 CuPd@DAB-1 和 CuPd@DAB-2 催化剂上的吸附行为,结果表明 CuPd@DAB-1 的 HMF 峰出现明显的红移,表明存在较强的界面相互作用,而对于CuPd@DAB-2,峰与纯 HMF 相似。这些相互作用归因于 CuPd@DAB-1 中表面暴露的 Cu-Pd 金属节点,与 CuPd@DAB-2 相比,具有更高的催化活性。计算研究进一步揭示了 Cu-Pd 协同相互作用在建立反应动力学和影响产物活性和选择性方面的作用。
更新日期:2024-09-10
中文翻译:
解读Cu(II)-Pd(0)参与多孔有机聚合物催化5-羟甲基糠醛氢解制2,5-二甲基呋喃的反应因子
近年来,催化生物质增值在解决环境问题和对可持续化学原料日益增长的需求方面具有重大前景。通过利用催化过程有效地将生物质转化为有价值的化学品和燃料,我们可以减少对化石燃料的依赖,同时减少碳排放,从而促进更可持续和更绿色的经济。在这个方向上,研究人员对生物质衍生的 5-羟甲基糠醛 (5-HMF) 的选择性氢化以生产独特的呋喃支架 2,5-二甲基呋喃 (DMF) 产生了很大的兴趣。这种兴趣源于其对称结构和广泛用作合成交联聚酯和聚氨酯的单体。效仿这一观点,我们有效地开发了一种经济有效且可扩展的方法,采用 FeCl 3辅助的弗里德尔-克来福特烷基化缩聚技术来合成富氮多孔有机聚合物(POP)(DAB)。此外,在高温下直接固相氢化方法已被用来生产负载在POP上的原子分散的CuPd双金属纳米球,无论是在腔体内还是在腔体外。这些纳米球保持稳定的 Cu 0/2+和 Pd 0/2+活性表面物种,形成称为 CuPd@DAB 的催化系统。该催化剂用于生物质生产5-HMF的选择性加氢,在优化的反应条件下,DMF的选择性为81.5%,并且在HMF的转化中表现出优异的活性。 在 CuPd@DAB-1 的情况下观察到的活性增强可以一致地归因于 Cu-Pd 合金纳米球的存在,这一点得到了综合实验研究的严格支持。通过 DRIFT 吸附研究分析了 HMF 在 CuPd@DAB-1 和 CuPd@DAB-2 催化剂上的吸附行为,结果表明 CuPd@DAB-1 的 HMF 峰出现明显的红移,表明存在较强的界面相互作用,而对于CuPd@DAB-2,峰与纯 HMF 相似。这些相互作用归因于 CuPd@DAB-1 中表面暴露的 Cu-Pd 金属节点,与 CuPd@DAB-2 相比,具有更高的催化活性。计算研究进一步揭示了 Cu-Pd 协同相互作用在建立反应动力学和影响产物活性和选择性方面的作用。