Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Magnetic Field Assisted Enhanced Sensitivity of Nonferromagnetic Materials Boosting the Carrier Transfer: Mechanistic Studies
ACS Sensors ( IF 8.2 ) Pub Date : 2024-09-10 , DOI: 10.1021/acssensors.4c01170 Jing Cao 1 , Zixuan Zhang 1 , Shuangming Wang 2 , Zhiying Sun 1 , Jiahao Li 1 , Yao Wang 1 , Xiaoxue Xu 1 , Zhixu Ye 1 , Haiming Zhang 1
ACS Sensors ( IF 8.2 ) Pub Date : 2024-09-10 , DOI: 10.1021/acssensors.4c01170 Jing Cao 1 , Zixuan Zhang 1 , Shuangming Wang 2 , Zhiying Sun 1 , Jiahao Li 1 , Yao Wang 1 , Xiaoxue Xu 1 , Zhixu Ye 1 , Haiming Zhang 1
Affiliation
The performance of semiconductor sensors is determined by reaction kinetics, conductivity, and electron mobility, which are undoubtedly closely related to the electron motion behavior. Therefore, the effective regulation of electronic states is crucial for improving gas sensing properties. Previous methods of enhancing the gas-sensing performance have induced complex material modifications, and the extent of performance improvement is usually very limited. Further optimization of the gas sensing performance requires continuous efforts to advance new technologies. Toward this issue, a novel magnetic field-induced strategy is adopted to boost the carrier transfer efficiency of nonferromagnetic semiconductors. The gas sensing investigation results manifest that the applied magnetic field can effectively enhance the sensitivity and reduce the baseline resistance. The In2O3 NC-2 (In2O3 nanocubes) with an applied magnetic field have a greatly enhanced response of 161.4 toward 100 ppm formaldehyde, which is 2.5 times higher than that without magnetic field. The enhanced gas sensing properties can be mainly attributed to magnetization of reactive materials, which makes the orientation of electronic magnetic moments consistent, thus greatly contributing to reactivity. This work introduces a practical approach to effectively improve gas sensing performance without further morphology optimization, noble metal catalysis, structural modification, and material cladding. The results of this study provide new insights for designing novel gas sensors to improve the gas sensing performance.
中文翻译:
磁场辅助增强非铁磁材料的灵敏度促进载流子转移:机理研究
半导体传感器的性能由反应动力学、电导率和电子迁移率决定,这无疑与电子运动行为密切相关。因此,电子态的有效调控对于提高气敏性能至关重要。以前增强气敏性能的方法会引起复杂的材料修饰,并且性能改进的程度通常非常有限。气体传感性能的进一步优化需要不断努力推进新技术。针对这个问题,采用了一种新颖的磁场感应策略来提高非铁磁半导体的载流子传输效率。气敏研究结果表明,外加磁场可以有效提高灵敏度,降低基线电阻。施加磁场的In 2 O 3 NC-2(In 2 O 3纳米立方体)对100 ppm甲醛的响应大大增强,为161.4,比没有磁场的响应高2.5倍。增强的气敏性能主要归因于反应材料的磁化,这使得电子磁矩的方向一致,从而极大地促进了反应性。这项工作介绍了一种有效提高气敏性能的实用方法,无需进一步形貌优化、贵金属催化、结构修饰和材料包覆。这项研究的结果为设计新型气体传感器以提高气体传感性能提供了新的见解。
更新日期:2024-09-10
中文翻译:
磁场辅助增强非铁磁材料的灵敏度促进载流子转移:机理研究
半导体传感器的性能由反应动力学、电导率和电子迁移率决定,这无疑与电子运动行为密切相关。因此,电子态的有效调控对于提高气敏性能至关重要。以前增强气敏性能的方法会引起复杂的材料修饰,并且性能改进的程度通常非常有限。气体传感性能的进一步优化需要不断努力推进新技术。针对这个问题,采用了一种新颖的磁场感应策略来提高非铁磁半导体的载流子传输效率。气敏研究结果表明,外加磁场可以有效提高灵敏度,降低基线电阻。施加磁场的In 2 O 3 NC-2(In 2 O 3纳米立方体)对100 ppm甲醛的响应大大增强,为161.4,比没有磁场的响应高2.5倍。增强的气敏性能主要归因于反应材料的磁化,这使得电子磁矩的方向一致,从而极大地促进了反应性。这项工作介绍了一种有效提高气敏性能的实用方法,无需进一步形貌优化、贵金属催化、结构修饰和材料包覆。这项研究的结果为设计新型气体传感器以提高气体传感性能提供了新的见解。