Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Injectable Mechanophore Nanoparticles for Deep-Tissue Mechanochemical Dynamic Therapy
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-09 , DOI: 10.1021/acsnano.4c04090 Jian Wang 1, 2 , Shensheng Zhao 1, 3, 4 , Junxi Yi 1, 3, 5 , Yunyan Sun 1, 2 , Megha Agrawal 1, 3, 5 , Michael L Oelze 1, 3, 4, 5, 6, 7 , King Li 1, 5, 6, 8 , Jeffrey S Moore 1, 2, 7 , Yun-Sheng Chen 1, 3, 4, 5, 6, 7
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-09 , DOI: 10.1021/acsnano.4c04090 Jian Wang 1, 2 , Shensheng Zhao 1, 3, 4 , Junxi Yi 1, 3, 5 , Yunyan Sun 1, 2 , Megha Agrawal 1, 3, 5 , Michael L Oelze 1, 3, 4, 5, 6, 7 , King Li 1, 5, 6, 8 , Jeffrey S Moore 1, 2, 7 , Yun-Sheng Chen 1, 3, 4, 5, 6, 7
Affiliation
Photodynamic therapy (PDT) and sonodynamic therapy (SDT), using nonionizing light and ultrasound to generate reactive oxygen species, offer promising localized treatments for cancers. However, the effectiveness of PDT is hampered by inadequate tissue penetration, and SDT largely relies on pyrolysis and sonoluminescence, which may cause tissue injury and imprecise targeting. To address these issues, we have proposed a mechanochemical dynamic therapy (MDT) that uses free radicals generated from mechanophore-embedded polymers under mechanical stress to produce reactive oxygen species for cancer treatment. Yet, their application in vivo is constrained by the bulk form of the polymer and the need for high ultrasound intensities for activation. In this study, we developed injectable, nanoscale mechanophore particles with enhanced ultrasound sensitivity by leveraging a core–shell structure comprising silica nanoparticles (NPs) whose interfaces are linked to polymer brushes by an azo mechanophore moiety. Upon focused ultrasound (FUS) treatment, this injectable NP generates reactive oxygen species (ROS), demonstrating promising results in both an in vitro 4T1 cell model and an in vivo mouse model of orthotopic breast cancers. This research offers an alternative therapy technique, integrating force-responsive azo mechanophores and FUS under biocompatible conditions.
中文翻译:
用于深层组织机械化学动力疗法的可注射机械载体纳米颗粒
光动力疗法 (PDT) 和声动力疗法 (SDT) 使用非电离光和超声波产生活性氧,为癌症提供了有前景的局部治疗方法。然而,PDT的有效性因组织穿透力不足而受到阻碍,而SDT很大程度上依赖于热解和声致发光,这可能会导致组织损伤和靶向不精确。为了解决这些问题,我们提出了一种机械化学动态疗法(MDT),该疗法利用机械应力下嵌入机械载体的聚合物产生的自由基来产生用于癌症治疗的活性氧。然而,它们在体内的应用受到聚合物的本体形式和需要高超声强度进行激活的限制。在这项研究中,我们利用由二氧化硅纳米粒子(NP)组成的核壳结构开发了具有增强超声灵敏度的可注射纳米级机械载体颗粒,其界面通过偶氮机械载体部分与聚合物刷连接。经过聚焦超声 (FUS) 治疗,这种可注射的 NP 会产生活性氧 (ROS),在体外 4T1 细胞模型和原位乳腺癌小鼠体内模型中均显示出良好的结果。这项研究提供了一种替代治疗技术,在生物相容性条件下整合力响应偶氮机械载体和 FUS。
更新日期:2024-09-09
中文翻译:
用于深层组织机械化学动力疗法的可注射机械载体纳米颗粒
光动力疗法 (PDT) 和声动力疗法 (SDT) 使用非电离光和超声波产生活性氧,为癌症提供了有前景的局部治疗方法。然而,PDT的有效性因组织穿透力不足而受到阻碍,而SDT很大程度上依赖于热解和声致发光,这可能会导致组织损伤和靶向不精确。为了解决这些问题,我们提出了一种机械化学动态疗法(MDT),该疗法利用机械应力下嵌入机械载体的聚合物产生的自由基来产生用于癌症治疗的活性氧。然而,它们在体内的应用受到聚合物的本体形式和需要高超声强度进行激活的限制。在这项研究中,我们利用由二氧化硅纳米粒子(NP)组成的核壳结构开发了具有增强超声灵敏度的可注射纳米级机械载体颗粒,其界面通过偶氮机械载体部分与聚合物刷连接。经过聚焦超声 (FUS) 治疗,这种可注射的 NP 会产生活性氧 (ROS),在体外 4T1 细胞模型和原位乳腺癌小鼠体内模型中均显示出良好的结果。这项研究提供了一种替代治疗技术,在生物相容性条件下整合力响应偶氮机械载体和 FUS。