当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Impact of Reversible Deactivation Radical Copolymerizations (RDRPs) on Gelation, Phase Separation, and Mechanical Properties of Polymer Networks
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-10 , DOI: 10.1021/acs.macromol.4c00905 Aaliyah Z. Dookhith 1 , Zidan Zhang 1 , Venkat Ganesan 1 , Gabriel E. Sanoja 1
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-10 , DOI: 10.1021/acs.macromol.4c00905 Aaliyah Z. Dookhith 1 , Zidan Zhang 1 , Venkat Ganesan 1 , Gabriel E. Sanoja 1
Affiliation
Polymer networks are widely used in engineering and biomedical applications because they can sustain large deformations. However, their mechanical properties, particularly at large strains, remain challenging to design within their molecular architecture through conventional synthetic methods, as these offer limited control over the kinetics and thermodynamics of gelation and, in turn, the connectivity of the polymers. In this work, we leverage recent advances in Reversible Deactivation Radical Copolymerizations (RDRPs) to tune the kinetics and thermodynamics of gelation and explore their impact on the molecular architecture and mechanical properties of polymer networks. We demonstrate that RDRPs lead to delayed gelation, phase separation, and softer and more extensible networks relative to conventional free radical copolymerizations. The reversible deactivation of the radical chain ends slows the kinetics of gelation, segregates the network precursors or clusters into cross-linker-rich and cross-linker-poor phases, and narrows the distribution of chain lengths within the polymers. This impact of the kinetics of gelation on the molecular architecture affects the load distribution among the constituent polymers and the interplay between the small- and large-strain mechanical properties. Overall, this work paves the way for rationally using polymer chemistry to design advanced polymer networks for emerging and more stringent applications.
中文翻译:
可逆失活自由基共聚 (RDRP) 对聚合物网络的凝胶化、相分离和机械性能的影响
聚合物网络广泛应用于工程和生物医学应用,因为它们可以承受大的变形。然而,它们的机械性能,特别是在大应变下,通过传统的合成方法在其分子结构中进行设计仍然具有挑战性,因为这些方法对凝胶化的动力学和热力学以及聚合物的连接性提供了有限的控制。在这项工作中,我们利用可逆失活自由基共聚(RDRP)的最新进展来调整凝胶化的动力学和热力学,并探索它们对聚合物网络的分子结构和机械性能的影响。我们证明,相对于传统的自由基共聚,RDRP 可延迟凝胶化、相分离以及更柔软且更具延展性的网络。自由基链端的可逆失活减缓了凝胶化动力学,将网络前体或簇分离成富含交联剂的相和缺乏交联剂的相,并缩小了聚合物内链长的分布。凝胶动力学对分子结构的影响会影响组成聚合物之间的负载分布以及小应变和大应变机械性能之间的相互作用。总的来说,这项工作为合理使用聚合物化学为新兴和更严格的应用设计先进的聚合物网络铺平了道路。
更新日期:2024-09-10
中文翻译:
可逆失活自由基共聚 (RDRP) 对聚合物网络的凝胶化、相分离和机械性能的影响
聚合物网络广泛应用于工程和生物医学应用,因为它们可以承受大的变形。然而,它们的机械性能,特别是在大应变下,通过传统的合成方法在其分子结构中进行设计仍然具有挑战性,因为这些方法对凝胶化的动力学和热力学以及聚合物的连接性提供了有限的控制。在这项工作中,我们利用可逆失活自由基共聚(RDRP)的最新进展来调整凝胶化的动力学和热力学,并探索它们对聚合物网络的分子结构和机械性能的影响。我们证明,相对于传统的自由基共聚,RDRP 可延迟凝胶化、相分离以及更柔软且更具延展性的网络。自由基链端的可逆失活减缓了凝胶化动力学,将网络前体或簇分离成富含交联剂的相和缺乏交联剂的相,并缩小了聚合物内链长的分布。凝胶动力学对分子结构的影响会影响组成聚合物之间的负载分布以及小应变和大应变机械性能之间的相互作用。总的来说,这项工作为合理使用聚合物化学为新兴和更严格的应用设计先进的聚合物网络铺平了道路。