Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis
Small ( IF 13.0 ) Pub Date : 2024-09-10 , DOI: 10.1002/smll.202405624 Xiaohui Sun 1 , Peng Zhang 1 , Bangyan Zhang 1 , Chunming Xu 1
Small ( IF 13.0 ) Pub Date : 2024-09-10 , DOI: 10.1002/smll.202405624 Xiaohui Sun 1 , Peng Zhang 1 , Bangyan Zhang 1 , Chunming Xu 1
Affiliation
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
中文翻译:
用于高效、稳定电催化的电子结构调控碳基单原子催化剂
在碳衬底上具有原子分散位点的单原子催化剂 (SAC) 在电催化方面取得了巨大进步,包括最大原子利用率、独特的化学性质和高催化性能。精确调节单原子位点的电子结构提供了一种合理的策略,以优化与活性中间体活化相关的反应过程,增强 SAC 的电催化活性。尽管在电荷转移、能带结构、轨道占用和自旋态方面提出了几种方法,但电子结构如何控制 SAC 的本征电催化活性的原理尚未得到充分研究。本文首先总结了调控碳基 SAC 电子结构的策略,包括非金属杂原子掺杂、配位数调控、缺陷工程、应变设计和双金属位点构图。其次,深入讨论了电子结构对反应性中间体活化行为的影响以及分解水、氧还原反应和 CO2/N2 电还原反应的电催化活性。通过将关键表征技术与密度泛函理论 (DFT) 计算相结合,可以细致地理解电子结构-性能关系。最后,对本文的结论和对该领域面临的挑战和未来前景提出了见解。本文重点介绍了对 SAC 电子结构相关电催化活性的理解,并指导了它们在电化学应用中的进展。
更新日期:2024-09-10
中文翻译:
用于高效、稳定电催化的电子结构调控碳基单原子催化剂
在碳衬底上具有原子分散位点的单原子催化剂 (SAC) 在电催化方面取得了巨大进步,包括最大原子利用率、独特的化学性质和高催化性能。精确调节单原子位点的电子结构提供了一种合理的策略,以优化与活性中间体活化相关的反应过程,增强 SAC 的电催化活性。尽管在电荷转移、能带结构、轨道占用和自旋态方面提出了几种方法,但电子结构如何控制 SAC 的本征电催化活性的原理尚未得到充分研究。本文首先总结了调控碳基 SAC 电子结构的策略,包括非金属杂原子掺杂、配位数调控、缺陷工程、应变设计和双金属位点构图。其次,深入讨论了电子结构对反应性中间体活化行为的影响以及分解水、氧还原反应和 CO2/N2 电还原反应的电催化活性。通过将关键表征技术与密度泛函理论 (DFT) 计算相结合,可以细致地理解电子结构-性能关系。最后,对本文的结论和对该领域面临的挑战和未来前景提出了见解。本文重点介绍了对 SAC 电子结构相关电催化活性的理解,并指导了它们在电化学应用中的进展。