当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of data-driven modeling approaches for chromatographic separation processes
AIChE Journal ( IF 3.5 ) Pub Date : 2024-09-10 , DOI: 10.1002/aic.18600
Foteini Michalopoulou 1, 2 , Maria M. Papathanasiou 1, 2
Affiliation  

Chromatographic separation processes are described by nonlinear partial differential and algebraic equations, which may result in high computational cost, hindering further online applications. To decrease the computational burden, different data-driven modeling approaches can be implemented. In this work, we investigate different strategies of data-driven modeling for chromatographic processes, using artificial neural networks to predict pseudo-dynamic elution profiles, without the use of explicit temporal information. We assess the performance of the surrogates trained on different dataset sizes, achieving good predictions with a minimum of 3400 data points. Different activation functions are used and evaluated against the original high-fidelity model, using accuracy, interpolation, and simulation time as performance metrics. Based on these metrics, the best performing data-driven models are implemented in a process optimization framework. The results indicate that data-driven models can capture the nonlinear profile of the process and that can be considered as reliable surrogates used to aid process development.

中文翻译:


评估色谱分离过程的数据驱动建模方法



色谱分离过程由非线性偏微分和代数方程描述,这可能会导致高计算成本,从而阻碍进一步的在线应用。为了减轻计算负担,可以实施不同的数据驱动建模方法。在这项工作中,我们研究了色谱过程数据驱动建模的不同策略,使用人工神经网络来预测伪动态洗脱曲线,而无需使用显式的时间信息。我们评估了在不同数据集大小上训练的代理的性能,以至少 3400 个数据点实现了良好的预测。使用不同的激活函数,并根据原始高保真模型进行评估,使用准确率、插值和仿真时间作为性能指标。基于这些指标,在流程优化框架中实施性能最佳的数据驱动模型。结果表明,数据驱动模型可以捕获过程的非线性曲线,并且可以将其视为用于辅助过程开发的可靠替代指标。
更新日期:2024-09-10
down
wechat
bug