当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Amino-Arsine and Amino-Phosphine Based Synthesis of InAs@InP@ZnSe core@shell@shell Quantum Dots
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-10 , DOI: 10.1002/aenm.202402246 Zheming Liu 1 , Jordi Llusar 2 , Hiba H. Karakkal 3 , Dongxu Zhu 1 , Yurii P. Ivanov 4 , Mirko Prato 5 , Giorgio Divitini 4 , Sergio Brovelli 3 , Ivan Infante 2, 6 , Luca De Trizio 7 , Liberato Manna 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-10 , DOI: 10.1002/aenm.202402246 Zheming Liu 1 , Jordi Llusar 2 , Hiba H. Karakkal 3 , Dongxu Zhu 1 , Yurii P. Ivanov 4 , Mirko Prato 5 , Giorgio Divitini 4 , Sergio Brovelli 3 , Ivan Infante 2, 6 , Luca De Trizio 7 , Liberato Manna 1
Affiliation
A colloidal synthesis protocol is demonstrated for InAs@InP core@shell quantum dots (QDs) with a tunable InP shell thickness (ranging from 3 to 8 monolayers), utilizing tris(diethylamino)-arsine and -phosphine. Structural analysis reveals that the InP shell preferentially grows onto the tetrahedral InAs cores along the <-1-1-1> directions, forming tetrapodal-shaped InAs@InP QDs. Growth of the InP shell causes a red shift in the absorption spectrum of the QDs. This is explained by considering that electrons are delocalized throughout the whole core@shell QDs, while holes preferentially leak along the <-1-1-1> directions, as indicated by the density functional theory calculations. This means such heterostructures cannot be described as type-I or quasi type-II, contrary to earlier assumptions. The overlap of carrier wavefunctions throughout the entire InAs@InP QD structure results in no significant reduction of the Auger recombination rate, which remains as fast as in InAs QDs. However, the InP shell enhances photoluminescence (PL) efficiency (up to ≈13%) by passivating surface trap states of the InAs QDs (mainly located close to the top of the valence band). The overgrowth of a ZnSe shell endows the QDs with a high PL efficiency (≈55%) and good stability upon air exposure (≈80% PL intensity retention after 14 days).
中文翻译:
基于氨基砷和氨基膦的 InAs@InP@ZnSe core@shell@shell 量子点合成
利用三(二乙氨基)-砷化氢和-膦,展示了具有可调 InP 壳厚度(范围为 3 至 8 个单层)的InAs@InP core@shell量子点 (QD) 的胶体合成方案。结构分析表明,InP 壳层优先沿 <-1-1-1> 方向生长在四面体 InAs 核上,形成四足形 InAs@InP QD。InP 壳层的生长导致 QD 吸收光谱发生红移。这可以通过考虑电子在整个 core@shell QD 中离域化来解释,而空穴优先沿 <-1-1-1> 方向泄漏,如密度泛函理论计算所示。这意味着这种异质结构不能被描述为 I 型或准 II 型,这与之前的假设相反。整个 InAs@InP QD 结构中载流波函数的重叠不会导致俄歇复合速率显著降低,其速度与 InAs QD 一样快。然而,InP 壳层通过钝化 InAs QD 的表面陷阱态(主要位于价带顶部附近)来提高光致发光 (PL) 效率(高达 ≈13%)。ZnSe 壳层的过度生长使 QD 具有高 PL 效率 (≈55%) 和暴露在空气中的良好稳定性(14 天后保持 ≈80% PL 强度)。
更新日期:2024-09-10
中文翻译:
基于氨基砷和氨基膦的 InAs@InP@ZnSe core@shell@shell 量子点合成
利用三(二乙氨基)-砷化氢和-膦,展示了具有可调 InP 壳厚度(范围为 3 至 8 个单层)的InAs@InP core@shell量子点 (QD) 的胶体合成方案。结构分析表明,InP 壳层优先沿 <-1-1-1> 方向生长在四面体 InAs 核上,形成四足形 InAs@InP QD。InP 壳层的生长导致 QD 吸收光谱发生红移。这可以通过考虑电子在整个 core@shell QD 中离域化来解释,而空穴优先沿 <-1-1-1> 方向泄漏,如密度泛函理论计算所示。这意味着这种异质结构不能被描述为 I 型或准 II 型,这与之前的假设相反。整个 InAs@InP QD 结构中载流波函数的重叠不会导致俄歇复合速率显著降低,其速度与 InAs QD 一样快。然而,InP 壳层通过钝化 InAs QD 的表面陷阱态(主要位于价带顶部附近)来提高光致发光 (PL) 效率(高达 ≈13%)。ZnSe 壳层的过度生长使 QD 具有高 PL 效率 (≈55%) 和暴露在空气中的良好稳定性(14 天后保持 ≈80% PL 强度)。