当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Predicting the performance of lithium adsorption and recovery from unconventional water sources with machine learning
Water Research ( IF 11.4 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.watres.2024.122374 Ziyang Xu 1 , Yihao Ding 2 , Soyeon Caren Han 2 , Changyong Zhang 1
Water Research ( IF 11.4 ) Pub Date : 2024-09-07 , DOI: 10.1016/j.watres.2024.122374 Ziyang Xu 1 , Yihao Ding 2 , Soyeon Caren Han 2 , Changyong Zhang 1
Affiliation
Selective lithium (Li) recovery from unconventional water sources (UWS) (e.g., shale gas waters, geothermal brines, and rejected seawater desalination brines) using inorganic lithium-ion sieve (LIS) materials can address Li supply shortages and distribution issues. However, the development of high-performance LIS materials and the optimization of recovery-related operating parameters are hampered by the variety of production methods, intricate procedures, and experimental expenses. Machine learning (ML) techniques offer potential solutions for enhancing LIS material development. We collected literature data on Li adsorption, categorizing 16 parameters into adsorbent parameters, operating parameters, and solution components. Three tree-based algorithms—Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and Extreme Gradient Boosting (XGBoost)—were used to evaluate the impact of these parameters on lithium adsorption. The grouped random splitting method limited data leakage and mitigated overfitting. XGBoost demonstrated the best performance, with an R² of 0.98 and a root-mean-squared error (RMSE) of 1.72. The SHAP values highlighted that operating parameters were the most influential, followed by adsorbent parameters and coexisting ion concentrations. Therefore, focusing on optimizing operating parameters or making targeted improvements on LIS based on operating conditions will enhance LIS performances in UWS. These insights are crucial for optimizing Li adsorption processes and designing effective inorganic LIS materials.
中文翻译:
通过机器学习预测非常规水源中锂的吸附和回收性能
使用无机锂离子筛 (LIS) 材料从非常规水源 (UWS)(例如页岩气水、地热卤水和废弃的海水淡化卤水)中选择性回收锂 (Li) 可以解决锂供应短缺和分销问题。然而,高性能 LIS 材料的开发和回收相关操作参数的优化受到各种生产方法、复杂程序和实验费用的阻碍。机器学习 (ML) 技术为增强 LIS 材料开发提供了潜在的解决方案。我们收集了有关 Li 吸附的文献数据,将 16 个参数分为吸附剂参数、操作参数和溶液组分。使用三种基于树的算法——随机森林 (RF)、梯度提升决策树 (GBDT) 和极端梯度提升 (XGBoost)——来评估这些参数对锂吸附的影响。分组随机分裂方法限制了数据泄漏并减轻了过拟合。XGBoost 表现出最佳性能,R² 为 0.98,均方根误差 (RMSE) 为 1.72。SHAP 值强调操作参数影响最大,其次是吸附剂参数和共存离子浓度。因此,专注于优化操作参数或根据操作条件对 LIS 进行有针对性的改进将提高 UWS 中的 LIS 性能。这些见解对于优化 Li 吸附过程和设计有效的无机 LIS 材料至关重要。
更新日期:2024-09-07
中文翻译:
通过机器学习预测非常规水源中锂的吸附和回收性能
使用无机锂离子筛 (LIS) 材料从非常规水源 (UWS)(例如页岩气水、地热卤水和废弃的海水淡化卤水)中选择性回收锂 (Li) 可以解决锂供应短缺和分销问题。然而,高性能 LIS 材料的开发和回收相关操作参数的优化受到各种生产方法、复杂程序和实验费用的阻碍。机器学习 (ML) 技术为增强 LIS 材料开发提供了潜在的解决方案。我们收集了有关 Li 吸附的文献数据,将 16 个参数分为吸附剂参数、操作参数和溶液组分。使用三种基于树的算法——随机森林 (RF)、梯度提升决策树 (GBDT) 和极端梯度提升 (XGBoost)——来评估这些参数对锂吸附的影响。分组随机分裂方法限制了数据泄漏并减轻了过拟合。XGBoost 表现出最佳性能,R² 为 0.98,均方根误差 (RMSE) 为 1.72。SHAP 值强调操作参数影响最大,其次是吸附剂参数和共存离子浓度。因此,专注于优化操作参数或根据操作条件对 LIS 进行有针对性的改进将提高 UWS 中的 LIS 性能。这些见解对于优化 Li 吸附过程和设计有效的无机 LIS 材料至关重要。