当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-win situation of wastewater purification, carbon emission reduction and resource utilization: Conversion of refractory organics and nitrate to urea and ammonia in a flow-through electrochemical integrated system
Water Research ( IF 11.4 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.watres.2024.122317 Xianjing Liu 1 , Jiayu Li 1 , Xinrui Guo 1 , Jintao Wu 1 , Ying Wang 1
Water Research ( IF 11.4 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.watres.2024.122317 Xianjing Liu 1 , Jiayu Li 1 , Xinrui Guo 1 , Jintao Wu 1 , Ying Wang 1
Affiliation
The advanced oxidation process is an efficient technology for the degradation and detoxification of refractory organics to ensure water safety. However, most researches focus on improving pollutant degradation but overlook carbon emission and resource utilization. In this study, a flow-through electrochemical integrated system was constructed to simultaneously realize bisphenol A (BPA) oxidation into small non-toxic organics and CO2 , and generated CO2 coupled with nitrate-containing wastewater conversion to urea and ammonia on a porous cathode (Zr-Fe/CN). The synergistic effect between anodic BPA oxidation with cathodic CO2 and NO3 − reduction improves the electron utilization efficiency and thus increasing the BPA degradation, urea yield rate (UYR) and NH3 yield rate (NYR) by 13.4 % 18.4 % and 8.3 %, respectively. Furthermore, the flow-through operation mode significantly increased the mass transfer efficiency and quickly carried generated CO2 from the anode into the cathode to improve CO2 utilization efficiency. Compared to the parallel plate electrode reactor, the BPA degradation efficiency, UYR and NYR in the flow-through reactor increased from 59.46 % to 84.49 % (the initial concentration of BPA was 40 mg/L), 9.94 mmol h −1 g −1 to 19.55 mmol h −1 g −1 , and 80.31 mmol h −1 g −1 to 106.06 mmol h −1 g −1 within 60 min, respectively. Moreover, the total carbon conversion efficiency (from BPA to urea) increased from 20.2 % to 42.4 % and the total Faraday efficiency (FE) increased from 78.6 % to 96.3 %. This work provides a multi-win strategy of harmless, resource-based and carbon emission reduction for wastewater treatment.
中文翻译:
废水净化、碳减排和资源化利用的双赢局面:在流通式电化学集成系统中将难降解有机物和硝酸盐转化为尿素和氨
高级氧化工艺是一种对难降解有机物进行降解和解毒以确保水安全的有效技术。然而,大多数研究都集中在改善污染物降解上,而忽视了碳排放和资源利用。本研究构建了流通式电化学集成系统,同时实现双酚 A (BPA) 氧化成小的无毒有机物和 CO2,并在多孔阴极 (Zr-Fe/CN) 上生成 CO2 与含硝酸盐废水转化为尿素和氨。阳极 BPA 氧化与阴极 CO2 和 NO3-还原之间的协同作用提高了电子利用效率,从而将 BPA 降解、尿素产率 (UYR) 和 NH3 产率 (NYR) 分别提高了 13.4 %、18.4 % 和 8.3 %。此外,流通式操作模式显著提高了传质效率,并将产生的 CO2 从阳极快速带入阴极,从而提高了 CO2 利用效率。与平行板电极反应器相比,流通式反应器中的 BPA 降解效率、UYR 和 NYR 分别从 59.46 % 增加到 84.49 %(BPA 的初始浓度为 40 mg/L)、9.94 mmol h-1g-1 增加到 19.55 mmol h-1g-1 和 80.31 mmol h-1g-1 到 106.06 mmol h-1g-1 到 106.06 mmol h-1g-1。此外,总碳转化效率(从 BPA 到尿素)从 20.2 % 提高到 42.4 %,总法拉第效率 (FE) 从 78.6 % 提高到 96.3 %。这项工作为废水处理提供了无害化、资源化、碳减排的多赢策略。
更新日期:2024-08-29
中文翻译:
废水净化、碳减排和资源化利用的双赢局面:在流通式电化学集成系统中将难降解有机物和硝酸盐转化为尿素和氨
高级氧化工艺是一种对难降解有机物进行降解和解毒以确保水安全的有效技术。然而,大多数研究都集中在改善污染物降解上,而忽视了碳排放和资源利用。本研究构建了流通式电化学集成系统,同时实现双酚 A (BPA) 氧化成小的无毒有机物和 CO2,并在多孔阴极 (Zr-Fe/CN) 上生成 CO2 与含硝酸盐废水转化为尿素和氨。阳极 BPA 氧化与阴极 CO2 和 NO3-还原之间的协同作用提高了电子利用效率,从而将 BPA 降解、尿素产率 (UYR) 和 NH3 产率 (NYR) 分别提高了 13.4 %、18.4 % 和 8.3 %。此外,流通式操作模式显著提高了传质效率,并将产生的 CO2 从阳极快速带入阴极,从而提高了 CO2 利用效率。与平行板电极反应器相比,流通式反应器中的 BPA 降解效率、UYR 和 NYR 分别从 59.46 % 增加到 84.49 %(BPA 的初始浓度为 40 mg/L)、9.94 mmol h-1g-1 增加到 19.55 mmol h-1g-1 和 80.31 mmol h-1g-1 到 106.06 mmol h-1g-1 到 106.06 mmol h-1g-1。此外,总碳转化效率(从 BPA 到尿素)从 20.2 % 提高到 42.4 %,总法拉第效率 (FE) 从 78.6 % 提高到 96.3 %。这项工作为废水处理提供了无害化、资源化、碳减排的多赢策略。