Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Forced air oscillations – pneumatic capacitance in microfluidic oscillators produces non-linear responses and emergent behaviors
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-09-09 , DOI: 10.1039/d4lc00455h Sasha Cai Lesher-Pérez 1, 2 , Vishwa Vasani 3, 4 , Jihye So 1 , Shuichi Takayama 4, 5
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-09-09 , DOI: 10.1039/d4lc00455h Sasha Cai Lesher-Pérez 1, 2 , Vishwa Vasani 3, 4 , Jihye So 1 , Shuichi Takayama 4, 5
Affiliation
Pneumatic control mechanisms have long been integral to microfluidic systems, primarily using solenoid valves, pressurized gases, and vacuums to direct liquid flow. Despite advancements in liquid-driven self-regulated microfluidic circuits, gas-driven systems leveraging fluid compressibility remain underexplored. This study presents a mathematical and experimental investigation of gas-driven microfluidic circuits, focusing on forced-air oscillators. We derive and validate a first-principles model of microfluidic circuit elements operated under positive pressurization, using a ‘molecular packets’ analogy to elucidate compressibility effects. Our findings reveal that gas compressibility impacts circuit behavior, by acting similar to a large capacitor in the system, which inherently results in longer oscillation periods. As the syringe evacuates, the capacitance decreases, which in turn reduces the oscillation period. Experimental validation of our system demonstrates persistent behavior when using forced air to drive the microfluidic oscillators, this includes assessing devices with various PDMS membrane thicknesses, as well as evaluating device performance under different flow rates and syringe sizes. The forced air oscillators exhibited decreasing periods and capacitance over time, aligning with our theoretical predictions.
中文翻译:
强制空气振荡 – 微流体振荡器中的气动电容产生非线性响应和紧急行为
气动控制机构长期以来一直是微流体系统不可或缺的一部分,主要使用电磁阀、加压气体和真空来引导液体流动。尽管液体驱动的自调节微流体电路取得了进步,但利用流体可压缩性的气体驱动系统仍未得到充分探索。本研究对气体驱动的微流体电路进行了数学和实验研究,重点是强制空气振荡器。我们推导出并验证了在正压下运行的微流体电路元件的第一性原理模型,使用“分子包”类比来阐明可压缩性效应。我们的研究结果表明,气体可压缩性会影响电路行为,其作用类似于系统中的大电容器,这本身就会导致更长的振荡周期。随着注射器抽真空,电容减小,这反过来又缩短了振荡周期。我们系统的实验验证表明,当使用强制空气驱动微流体振荡器时,存在持续行为,这包括评估具有各种 PDMS 膜厚度的设备,以及评估不同流速和注射器尺寸下的设备性能。随着时间的推移,强制空气振荡器表现出减小的周期和电容,这与我们的理论预测一致。
更新日期:2024-09-09
中文翻译:
强制空气振荡 – 微流体振荡器中的气动电容产生非线性响应和紧急行为
气动控制机构长期以来一直是微流体系统不可或缺的一部分,主要使用电磁阀、加压气体和真空来引导液体流动。尽管液体驱动的自调节微流体电路取得了进步,但利用流体可压缩性的气体驱动系统仍未得到充分探索。本研究对气体驱动的微流体电路进行了数学和实验研究,重点是强制空气振荡器。我们推导出并验证了在正压下运行的微流体电路元件的第一性原理模型,使用“分子包”类比来阐明可压缩性效应。我们的研究结果表明,气体可压缩性会影响电路行为,其作用类似于系统中的大电容器,这本身就会导致更长的振荡周期。随着注射器抽真空,电容减小,这反过来又缩短了振荡周期。我们系统的实验验证表明,当使用强制空气驱动微流体振荡器时,存在持续行为,这包括评估具有各种 PDMS 膜厚度的设备,以及评估不同流速和注射器尺寸下的设备性能。随着时间的推移,强制空气振荡器表现出减小的周期和电容,这与我们的理论预测一致。