当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superelastic hydrogel electrolyte incorporating helical protein molecules as zinc ion transport pathways to enhance the cycling stability of zinc metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-10 , DOI: 10.1039/d4ee02510e Xiaoyun Xu , Songmei Li , Shubin Yang , Bin Li
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-09-10 , DOI: 10.1039/d4ee02510e Xiaoyun Xu , Songmei Li , Shubin Yang , Bin Li
Flexible zinc metal batteries are one of the most promising candidates for future energy storage devices, however, their performance is hampered by current hydrogel electrolytes with low ionic conductivity and low mechanical strength. Herein, a superelastic hydrogel electrolyte (α-HP/PVA) is developed by incorporating α-helical protein (α-HP, extracted from wool) molecules in poly(vinyl alcohol) networks. Because of the unique α-helical structure and abundant functional groups, the obtained superelastic hydrogel electrolyte exhibits high fracture strength (4.97 MPa) and a high elongation rate (∼600%). In α-HP/PVA, it is demonstrated that Zn2+ competitively coordinates with the N and O in the α-helical protein, which affords a low transport energy barrier and a short transport distance, achieving an ultra-high ionic conductivity of 93.8 mS cm−1. Moreover, α-HP/PVA could avoid anodic passivation and corrosion to maintain the anode activity and guide the dendrite-free deposition. Consequently, the Zn|α-HP/PVA|Zn symmetric cell achieves a long cycle life of over 5300 h, and the full cell with the α-HP/PVA electrolyte and the NaV3O8–1.5H2O cathode exhibits a high-capacity retention of ∼96% after 800 cycles at 1 A g−1. This study of advancing ion transport with a unique helical structure provides a new way to promote the application of zinc metal batteries.
中文翻译:
超弹性水凝胶电解质结合螺旋蛋白分子作为锌离子传输途径,以增强锌金属电池的循环稳定性
柔性锌金属电池是未来储能设备最有希望的候选者之一,然而,其性能受到当前离子电导率低和机械强度低的水凝胶电解质的阻碍。在此,通过将α-螺旋蛋白(α-HP,从羊毛中提取)分子纳入聚乙烯醇网络中,开发了超弹性水凝胶电解质(α-HP/PVA)。由于独特的α螺旋结构和丰富的官能团,所获得的超弹性水凝胶电解质表现出高断裂强度(4.97 MPa)和高伸长率(∼600%)。在α-HP/PVA中,Zn 2+与α-螺旋蛋白中的N和O竞争性配位,提供了低传输能垒和短传输距离,实现了93.8的超高离子电导率mS cm -1 。此外,α-HP/PVA可以避免阳极钝化和腐蚀,以保持阳极活性并引导无枝晶沉积。因此,Zn|α-HP/PVA|Zn对称电池实现了超过5300小时的长循环寿命,并且具有α-HP/PVA电解质和NaV 3 O 8 –1.5H 2 O阴极的全电池表现出在 1 A g −1下循环 800 次后,高容量保留率约为 96%。这项利用独特螺旋结构推进离子传输的研究为促进锌金属电池的应用提供了新途径。
更新日期:2024-09-10
中文翻译:
超弹性水凝胶电解质结合螺旋蛋白分子作为锌离子传输途径,以增强锌金属电池的循环稳定性
柔性锌金属电池是未来储能设备最有希望的候选者之一,然而,其性能受到当前离子电导率低和机械强度低的水凝胶电解质的阻碍。在此,通过将α-螺旋蛋白(α-HP,从羊毛中提取)分子纳入聚乙烯醇网络中,开发了超弹性水凝胶电解质(α-HP/PVA)。由于独特的α螺旋结构和丰富的官能团,所获得的超弹性水凝胶电解质表现出高断裂强度(4.97 MPa)和高伸长率(∼600%)。在α-HP/PVA中,Zn 2+与α-螺旋蛋白中的N和O竞争性配位,提供了低传输能垒和短传输距离,实现了93.8的超高离子电导率mS cm -1 。此外,α-HP/PVA可以避免阳极钝化和腐蚀,以保持阳极活性并引导无枝晶沉积。因此,Zn|α-HP/PVA|Zn对称电池实现了超过5300小时的长循环寿命,并且具有α-HP/PVA电解质和NaV 3 O 8 –1.5H 2 O阴极的全电池表现出在 1 A g −1下循环 800 次后,高容量保留率约为 96%。这项利用独特螺旋结构推进离子传输的研究为促进锌金属电池的应用提供了新途径。