Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
True Random Number Generator Based on Chaotic Oscillation of a Tunable Double-Well MEMS Resonator
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202403755 Junhui Wu 1 , Haoyang Sun 1 , Guangya Zhou 1
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202403755 Junhui Wu 1 , Haoyang Sun 1 , Guangya Zhou 1
Affiliation
Chaotic systems have aroused interest across various scientific disciplines such as physics, biology, chemistry, and meteorology. The deterministic but unpredictable nature of a chaotic system is an ideal feature for random number generation. Microelectromechanical systems (MEMS) are a promising technology that effectively harnesses chaos, offering advantages such as a compact footprint, scalability, and low power consumption. This paper presents a true random number generator (TRNG) based on a double-well MEMS resonator integrated with an actuator and position sensor. The potential energy landscape of the proposed MEMS resonator is actively tunable with a direct current voltage. Experimental demonstrations of tunable bistability and chaotic resonance are reported in this paper. A chaotic time sequence is generated through piezoresistive sensing of the position of the MEMS resonator once it is driven into the chaotic regime. Subsequently, the randomness of the bit sequence, achieved by applying the exclusive or function to a digital chaotic sequence and its delayed differential is confirmed to meet the National Institute of Standards and Technology specifications. Moreover, the throughput and energy efficiency of the proposed MEMS-based TRNG can be adjusted from 50 kb s–1 and 0.44 pJ per bit at a low energy barrier to 167 kb s–1 and 6.74 pJ per bit at a high energy barrier by changing the MEMS device's potential well. The tunability of the proposed double-well MEMS resonator not only offers continuous adjustments in the energy efficiency of TNRG but also unveils vast and diverse research opportunities in analog computing, encryption, and secure communications.
中文翻译:
基于可调谐双阱 MEMS 谐振器混沌振荡的真随机数发生器
混沌系统引起了物理学、生物学、化学和气象学等各个科学学科的兴趣。混沌系统的确定性但不可预测的性质是随机数生成的理想特征。微机电系统 (MEMS) 是一项很有前途的技术,可以有效地利用混沌,具有占用空间小、可扩展性和低功耗等优势。本文提出了一种基于双阱 MEMS 谐振器的真随机数发生器 (TRNG),该谐振器集成了致动器和位置传感器。所提出的 MEMS 谐振器的势能曲线可通过直流电压主动调节。本文报道了可调谐双稳态和混沌谐振的实验证明。一旦 MEMS 谐振器被驱动到混沌状态,通过压阻式感应 MEMS 谐振器的位置,就会产生混沌时间序列。随后,通过将 exclusive 或 function 应用于数字混沌序列及其延迟差分来实现的位序列的随机性被确认为符合美国国家标准与技术研究院的规范。此外,通过改变 MEMS 器件的电位阱,所提出的基于 MEMS 的 TRNG 的吞吐量和能效可以从低能量势垒下的 50 kb s-1 和 0.44 pJ/bit 调整到高能量势垒下的 167 kb s-1 和 6.74 pJ/bit。所提出的双阱 MEMS 谐振器的可调性不仅为 TNRG 的能效提供了持续调整,而且还在模拟计算、加密和安全通信方面提供了广泛而多样的研究机会。
更新日期:2024-09-09
中文翻译:
基于可调谐双阱 MEMS 谐振器混沌振荡的真随机数发生器
混沌系统引起了物理学、生物学、化学和气象学等各个科学学科的兴趣。混沌系统的确定性但不可预测的性质是随机数生成的理想特征。微机电系统 (MEMS) 是一项很有前途的技术,可以有效地利用混沌,具有占用空间小、可扩展性和低功耗等优势。本文提出了一种基于双阱 MEMS 谐振器的真随机数发生器 (TRNG),该谐振器集成了致动器和位置传感器。所提出的 MEMS 谐振器的势能曲线可通过直流电压主动调节。本文报道了可调谐双稳态和混沌谐振的实验证明。一旦 MEMS 谐振器被驱动到混沌状态,通过压阻式感应 MEMS 谐振器的位置,就会产生混沌时间序列。随后,通过将 exclusive 或 function 应用于数字混沌序列及其延迟差分来实现的位序列的随机性被确认为符合美国国家标准与技术研究院的规范。此外,通过改变 MEMS 器件的电位阱,所提出的基于 MEMS 的 TRNG 的吞吐量和能效可以从低能量势垒下的 50 kb s-1 和 0.44 pJ/bit 调整到高能量势垒下的 167 kb s-1 和 6.74 pJ/bit。所提出的双阱 MEMS 谐振器的可调性不仅为 TNRG 的能效提供了持续调整,而且还在模拟计算、加密和安全通信方面提供了广泛而多样的研究机会。