Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Oxygen Vacancy Engineering and Constructing Built-In Electric Field in Fe-g-C3N4/Bi2MoO6 Z-Scheme Heterojunction for Boosting Photo-Fenton Catalytic Degradation Performance of Tetracycline
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202406125 Zhanshou Wang 1 , Shuang Meng 1, 2 , Jinlong Li 1, 2 , Dongxuan Guo 1, 2 , Shanshan Fu 1, 2 , Dantong Zhang 1, 2, 3 , Xue Yang 1, 2 , Guozhe Sui 1, 2
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202406125 Zhanshou Wang 1 , Shuang Meng 1, 2 , Jinlong Li 1, 2 , Dongxuan Guo 1, 2 , Shanshan Fu 1, 2 , Dantong Zhang 1, 2, 3 , Xue Yang 1, 2 , Guozhe Sui 1, 2
Affiliation
A novel Fe-g-C3N4/Bi2MoO6 (FCNB) Z-scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo-Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density-functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe-N4 sites induces spin-polarization in the material, and the difference in Fermi energy levels results in the formation of built-in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into “non-toxic” compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.
中文翻译:
Fe-g-C3N4/Bi2MoO6 z型异质结氧空位工程与构建内置电场,提高四环素光芬顿催化降解性能
构建了一种富含氧空位的新型 Fe-g-C3N4/Bi2MoO6 (FCNB) Z 型异质结,并将其用于四环素 (TC) 的光芬顿降解。2% FCNB 对 TC 废水表现出突出的催化性能和矿化效率,显示出比纯光催化技术高 8.20 倍的活性。密度泛函理论 (DFT) 计算和降解实验证实,Fe-N4 位点的形成会诱导材料中的自旋极化,费米能级的差异导致在接触界面处形成内置电场,这有利于光生载流子的连续产生和迁移,以解决 Fe (III)/Fe (II) 循环功率不足的问题。反应性自由基持续靶向 Fukui 函数预期的极强反应性位点,导致 TC 分子通过羟基化、去甲基化和脱酰胺化过程矿化成“无毒”化合物。这项工作在消除水中的有机污染物领域具有重要意义。
更新日期:2024-09-09
中文翻译:
Fe-g-C3N4/Bi2MoO6 z型异质结氧空位工程与构建内置电场,提高四环素光芬顿催化降解性能
构建了一种富含氧空位的新型 Fe-g-C3N4/Bi2MoO6 (FCNB) Z 型异质结,并将其用于四环素 (TC) 的光芬顿降解。2% FCNB 对 TC 废水表现出突出的催化性能和矿化效率,显示出比纯光催化技术高 8.20 倍的活性。密度泛函理论 (DFT) 计算和降解实验证实,Fe-N4 位点的形成会诱导材料中的自旋极化,费米能级的差异导致在接触界面处形成内置电场,这有利于光生载流子的连续产生和迁移,以解决 Fe (III)/Fe (II) 循环功率不足的问题。反应性自由基持续靶向 Fukui 函数预期的极强反应性位点,导致 TC 分子通过羟基化、去甲基化和脱酰胺化过程矿化成“无毒”化合物。这项工作在消除水中的有机污染物领域具有重要意义。