Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spatially Confined Alloying of Pt Accelerates Mass Transport for Fuel Cell Oxygen Reduction
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202405748 Yuxin Gao 1 , Hang Liu 1 , Xintian Wang 2, 3 , Xiao Liu 2 , Bin Shan 1 , Rong Chen 2
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202405748 Yuxin Gao 1 , Hang Liu 1 , Xintian Wang 2, 3 , Xiao Liu 2 , Bin Shan 1 , Rong Chen 2
Affiliation
Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.10 ± 0.53 nm). The membrane electrode assembly with mesoporous carbon-supported PtSn alloy catalyst achieves a high initial mass activity of 0.85 A at 0.9 V, which is attributed to the smallest local oxygen transport resistance (3.68 S m−1) ever reported. The mass activity of the catalyst only decreases by 11% after 30000 cycles of accelerated durability test, representing superior full-cell durability among the reported Pt-based alloy catalysts. The enhanced activity and durability are attributed to the decreased adsorption energy of oxygen intermediates on Pt surface and the strong electronic interaction between Pt and Sn inhibiting Pt dissolution.
中文翻译:
Pt 的空间限制合金化加速了燃料电池减氧的质量传递
质子交换膜燃料电池非常需要具有高质量活性和耐用性的 Pt 基合金,但由于催化剂附近的高质量传输阻力和较低的 Pt 负载,仍然存在巨大的挑战。在此,报道了一种采用原子层沉积的可扩展方法,通过控制沉积位点和数量,将气相金属前驱体准确地引入铂纳米颗粒 (NPs) 预填充的介孔通道中。经过空间限制合金化处理后,制备的 PtSn 合金催化剂在介孔内表现出小尺寸和均匀分布 (2.10 ± 0.53 nm)。采用介孔碳负载 PtSn 合金催化剂的膜电极组件在 0.9 V 时实现了 0.85 的高初始质量活性,这归因于最小的局部氧传输阻力 (3.68 S m−1 ) 曾经报道过。经过 30000 次加速耐久性测试后,催化剂的质量活性仅降低了 11%,在已报道的 Pt 基合金催化剂中表现出优异的全孔耐久性。增强的活性和耐久性归因于氧中间体在 Pt 表面的吸附能降低以及 Pt 和 Sn 之间的强电子相互作用抑制 Pt 溶解。
更新日期:2024-09-09
中文翻译:
Pt 的空间限制合金化加速了燃料电池减氧的质量传递
质子交换膜燃料电池非常需要具有高质量活性和耐用性的 Pt 基合金,但由于催化剂附近的高质量传输阻力和较低的 Pt 负载,仍然存在巨大的挑战。在此,报道了一种采用原子层沉积的可扩展方法,通过控制沉积位点和数量,将气相金属前驱体准确地引入铂纳米颗粒 (NPs) 预填充的介孔通道中。经过空间限制合金化处理后,制备的 PtSn 合金催化剂在介孔内表现出小尺寸和均匀分布 (2.10 ± 0.53 nm)。采用介孔碳负载 PtSn 合金催化剂的膜电极组件在 0.9 V 时实现了 0.85