当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seriation of Enzyme-Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202402128
Brittany Foley 1, 2 , Frédéric Nadaud 3 , Mohamed Selmane 4 , Laetitia Valentin 1 , Alberto Mezzetti 1 , Christophe Egles 5 , Claude Jolivalt 1 , Karim El Kirat 2 , Clément Guibert 1 , Jessem Landoulsi 1, 2
Affiliation  

Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.

中文翻译:


酶功能化多层膜的系列化用于设计可扩展的仿生矿化结构



仿生羟基磷灰石因其在修复矿化组织方面的潜在应用而被广泛探索,尤其是牙釉质,牙釉质是无细胞的,因此在损伤后不会自然重组。牙釉质是用高度受控的分层结构形成的,很难复制到宏观尺度。因此,基于驱动体内生物矿化的相同原理,仿生方法得到了保证。本文描述了一种设计类牙釉质结构的策略,利用嵌入聚电解质多层中的酶局部生成无机磷酸盐,并为矿物的成核和生长提供有利的化学环境。此外,还提出了一种方法来构建具有可扩展厚度、连续矿物生长和可调形态的鳞状矿物层。结果表明,粘性矿物层的显着生长,产生了宏观的独立氟化物和/或碳酸盐取代的羟基磷灰石材料,其晶体结构和组成与天然人类矿化组织相当。该策略为生物矿物材料的仿生设计提供了一条有前途的前进道路,特别是与修复应用相关,具有多个数量级的精细合成控制水平。
更新日期:2024-09-09
down
wechat
bug