Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Internal Space Modulation of Yolk-Shell FeSe2@Carbon Anode with Peanut-Shaped Morphology Enabling Ultra-Stable and Fast Potassium-Ion Storage
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202406577 Xinyu Wang 1 , Lei Yang 1 , Huanyu Liang 1 , Chunliu Zhu 1 , Jing Shi 1 , Jingyi Wu 1 , Jingwei Chen 1 , Weiqian Tian 1 , Yue Zhu 1 , Huanlei Wang 1
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202406577 Xinyu Wang 1 , Lei Yang 1 , Huanyu Liang 1 , Chunliu Zhu 1 , Jing Shi 1 , Jingyi Wu 1 , Jingwei Chen 1 , Weiqian Tian 1 , Yue Zhu 1 , Huanlei Wang 1
Affiliation
The poor cycling stability and rate performance of transition metal selenides (TMSs) are caused by their intrinsic low conductivity and poor structural stability, which hinders their application in potassium-ion batteries (PIBs). To address this issue, encapsulating TMSs within carbon nanoshells is considered a viable strategy. However, due to the lack and uncontrollability of internal void space, this structure cannot effectively mitigate the volume expansion induced by large K+, resulting in unsatisfactory electrochemical performance. Herein, peanut-shaped FeSe2@carbon yolk-shell capsules are prepared by modulation of the internal space. The active FeSe2 is encapsulated within a robust carbon shell and an optimal void space is retained between them. The outer carbon shell promotes electronic conductivity and avoids FeSe2 aggregation, while the internal void mitigates volume expansion and effectively ensures the structural integrity of the electrode. Consequently, the FeSe2@carbon anode demonstrates exceptional rate performance (242 mAh g−1 at 10 A g−1) and long cycling stability (350 mAh g−1 after 500 cycles at 1 A g−1). Furthermore, the effect of internal space modulation on electrochemical properties is elucidated. Meanwhile, ex situ characterizations elucidate the K+ storage mechanism. This work provides effective guidance for the design and the internal space modulation of advanced TMSs yolk-shell structures.
中文翻译:
具有花生形形态的蛋黄壳FeSe2@Carbon阳极的内部空间调制可实现超稳定和快速的钾离子储存
过渡金属硒化物 (TMS) 的循环稳定性和倍率性能差是由于其固有的低电导率和较差的结构稳定性造成的,这阻碍了它们在钾离子电池 (PIBs) 中的应用。为了解决这个问题,将 TMS 封装在碳纳米壳中被认为是一种可行的策略。然而,由于内部空隙空间的缺乏和不可控性,这种结构不能有效缓解大 K+ 引起的体积膨胀,导致电化学性能不理想。在此,通过调节内部空间制备花生形 FeSe2@carbon 蛋黄壳胶囊。活性 FeSe2 封装在坚固的碳壳中,并在它们之间保留了最佳空隙空间。外部碳壳促进电子导电并避免 FeSe2 聚集,而内部空隙减轻体积膨胀并有效保证电极的结构完整性。因此,FeSe2@carbon 负极表现出出色的倍率性能(10 A g-1 时为 242 mAh g-1)和长循环稳定性(在 1 A g-1 下循环 500 次后为 350 mAh g-1)。此外,阐明了内部空间调制对电化学性质的影响。同时,非原位表征阐明了 K+ 存储机制。这项工作为高级 TMSs 蛋黄壳结构的设计和内部空间调控提供了有效的指导。
更新日期:2024-09-09
中文翻译:
具有花生形形态的蛋黄壳FeSe2@Carbon阳极的内部空间调制可实现超稳定和快速的钾离子储存
过渡金属硒化物 (TMS) 的循环稳定性和倍率性能差是由于其固有的低电导率和较差的结构稳定性造成的,这阻碍了它们在钾离子电池 (PIBs) 中的应用。为了解决这个问题,将 TMS 封装在碳纳米壳中被认为是一种可行的策略。然而,由于内部空隙空间的缺乏和不可控性,这种结构不能有效缓解大 K+ 引起的体积膨胀,导致电化学性能不理想。在此,通过调节内部空间制备花生形 FeSe2@carbon 蛋黄壳胶囊。活性 FeSe2 封装在坚固的碳壳中,并在它们之间保留了最佳空隙空间。外部碳壳促进电子导电并避免 FeSe2 聚集,而内部空隙减轻体积膨胀并有效保证电极的结构完整性。因此,FeSe2@carbon 负极表现出出色的倍率性能(10 A g-1 时为 242 mAh g-1)和长循环稳定性(在 1 A g-1 下循环 500 次后为 350 mAh g-1)。此外,阐明了内部空间调制对电化学性质的影响。同时,非原位表征阐明了 K+ 存储机制。这项工作为高级 TMSs 蛋黄壳结构的设计和内部空间调控提供了有效的指导。