当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective Recycling of Spent Lithium-Ion Batteries Enables Toward Aqueous Zn-Ion Batteries Cathode
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202402560 Xiao Wei Lv 1 , Jiao Lin 1 , Xiao Dong Zhang 1 , Qing Rong Huang 1 , Xuan Sun 1, 2 , Er Sha Fan 1, 2 , Ren Jie Chen 1, 2, 3 , Feng Wu 1, 2, 3 , Li Li 1, 2, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202402560 Xiao Wei Lv 1 , Jiao Lin 1 , Xiao Dong Zhang 1 , Qing Rong Huang 1 , Xuan Sun 1, 2 , Er Sha Fan 1, 2 , Ren Jie Chen 1, 2, 3 , Feng Wu 1, 2, 3 , Li Li 1, 2, 3
Affiliation
Effective selective recycling of spent lithium-ion batteries (S-LIBs) and giving recycled products a “second life” are crucial for advancing energy supply circularity, environmental and economic sustainability development. However, separating metal compounds with similar charge differences requires substantial energy, water, and chemical inputs. Herein, an innovative strategy is present for selective recycling S-LIBs by photoexcitation inspired by the Hard Soft Acid Base (HSAB) principle. Theoretical calculations and experimental results show that photoexcitation drives charge transfer and modulates subtle charge density differences among metal components, thereby enhancing their solubility disparity and facilitating metal separation. Remarkably, the photoexcitation-induced metal separation factor reaches 46900 and the metal recovery efficiency approaches 100%, representing a significant improvement over non-photoexcitation separation with a separation factor of non-photoexcitation of merely 2.7. Through techno-economic analysis, the viability of photoexcitation selective recycling technology has been confirmed as an eco-friendly and economical approach for battery recycling. Furthermore, high-value reuse of recovered Mn components is implemented. The Recycled Mn components are treated by calcination to obtain porous, defect-rich Mn2O3, which showed a specific capacity of 613 mAh g−1 at 0.1 A g−1) in aqueous Zn-ion batteries (AZIBs). This work provides fresh insight into recycling S-LIBs and moving toward more sustainable storage technologies.
中文翻译:
废旧锂离子电池的选择性回收可实现水性 Zn 离子电池阴极
有效选择性地回收废旧锂离子电池 (S-LIB) 并赋予回收产品“第二次生命”对于推进能源供应循环、环境和经济可持续发展至关重要。然而,分离具有相似电荷差异的金属化合物需要大量的能源、水和化学投入。在此,存在一种受硬软酸碱 (HSAB) 原理启发的光激发选择性回收 S-LIBs 的创新策略。理论计算和实验结果表明,光激发驱动电荷转移并调节金属组分之间细微的电荷密度差异,从而增强它们的溶解度差异并促进金属分离。值得注意的是,光激发诱导的金属分离因子达到 46900,金属回收效率接近 100%,与非光激发分离相比有了显着改进,非光激发分离因子仅为 2.7。通过技术经济分析,光激发选择性回收技术的可行性已被证实是一种环保且经济的电池回收方法。此外,还实现了回收的 Mn 组分的高价值再利用。回收的 Mn 组分通过煅烧处理以获得多孔、富含缺陷的 Mn 2 O 3 ,它在水系锌离子电池 (AZIB) 中显示出 613 mAh g −1 的比容量为 0.1 A g −1 )。这项工作为回收 S-LIB 和转向更可持续的存储技术提供了新的见解。
更新日期:2024-09-09
中文翻译:
废旧锂离子电池的选择性回收可实现水性 Zn 离子电池阴极
有效选择性地回收废旧锂离子电池 (S-LIB) 并赋予回收产品“第二次生命”对于推进能源供应循环、环境和经济可持续发展至关重要。然而,分离具有相似电荷差异的金属化合物需要大量的能源、水和化学投入。在此,存在一种受硬软酸碱 (HSAB) 原理启发的光激发选择性回收 S-LIBs 的创新策略。理论计算和实验结果表明,光激发驱动电荷转移并调节金属组分之间细微的电荷密度差异,从而增强它们的溶解度差异并促进金属分离。值得注意的是,光激发诱导的金属分离因子达到 46900,金属回收效率接近 100%,与非光激发分离相比有了显着改进,非光激发分离因子仅为 2.7。通过技术经济分析,光激发选择性回收技术的可行性已被证实是一种环保且经济的电池回收方法。此外,还实现了回收的 Mn 组分的高价值再利用。回收的 Mn 组分通过煅烧处理以获得多孔、富含缺陷的 Mn 2 O 3 ,它在水系锌离子电池 (AZIB) 中显示出 613 mAh g −1 的比容量为 0.1 A g −1 )。这项工作为回收 S-LIB 和转向更可持续的存储技术提供了新的见解。