当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Layered Structure Modification of Sodium Vanadate through Ca/F Co-Doping for Enhanced Energy Storage Performance
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202401481 Jiajia Han 1, 2 , Shuting Gao 1, 2 , Zhefei Sun 1, 2 , Zonghua Yang 1, 2 , Xingjun Liu 1, 3, 4 , Cuiping Wang 1, 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202401481 Jiajia Han 1, 2 , Shuting Gao 1, 2 , Zhefei Sun 1, 2 , Zonghua Yang 1, 2 , Xingjun Liu 1, 3, 4 , Cuiping Wang 1, 2
Affiliation
Vanadate materials are promising for sodium-ion batteries (SIBs) due to their low cost, high capacity, and high power characteristics enabled by vanadium's multiple oxidation states. However, their development is hindered by poor conductivity, suboptimal high-rate performance, and limited cycle life. In this work, a layered structure modification strategy involving Ca/F co-doping in sodium vanadate Na2CaV2O6F (CVF) is proposed to address these issues. Through a combination of experiments and density functional theory calculations, it is demonstrated that Ca/F synergies enhance the Na layer spacing in CVF, resulting in reduced crystal water content and volume shrinkage compared to Na2V2O6 (NVO). Additionally, Ca/F incorporation significantly mitigates the diffusion potential of Na+ within the material framework. The unmodified CVF sample exhibits a high reversible capacity of 220 mAh g−1 at 10 mA g−1 and an excellent rate capacity of 65.78 mAh g−1 at 400 mA g−1. Furthermore, the cathode material maintains a capacity of up to 138 mAh g−1 at 200 mA g−1 and retains 104.88 mAh g−1 after 100 cycles within the voltage range of 1.5−4.0 V. These findings enhance the understanding of the crystal structure of NVO cathode materials and pave the way for the rational design of high-quality vanadate cathodes for SIBs.
中文翻译:
通过 Ca/F 共掺杂对钒酸钠进行层状结构改性以增强储能性能
钒酸盐材料因其低成本、高容量和高功率特性而有望用于钠离子电池 (SIB),因为钒的多种氧化态使其具有高功率特性。然而,它们的开发受到导电性差、次优的高倍率性能和有限的循环寿命的阻碍。在这项工作中,提出了一种涉及钒酸钠 Na2CaV2O6F (CVF) 中 Ca/F 共掺杂的分层结构修饰策略来解决这些问题。通过实验和密度泛函理论计算的结合,证明 Ca/F 协同作用增强了 CVF 中的 Na 层间距,与 Na2V2O6 (NVO) 相比,结晶水含量和体积收缩率降低。此外,Ca/F 掺入显著降低了 Na+ 在材料框架内的扩散潜力。未修饰的 CVF 样品在 10 mA g-1 时表现出 220 mAh g-1 的高可逆容量,在 400 mA g-1 时表现出 65.78 mAh g-1 的出色倍率容量。此外,正极材料在 200 mA g-1 时保持高达 138 mAh g-1 的容量,并在 1.5-4.0 V 的电压范围内循环 100 次后保持 104.88 mAh g-1。这些发现增强了对 NVO 正极材料晶体结构的理解,并为合理设计用于 SIB 的高质量钒酸盐正极铺平了道路。
更新日期:2024-09-09
中文翻译:
通过 Ca/F 共掺杂对钒酸钠进行层状结构改性以增强储能性能
钒酸盐材料因其低成本、高容量和高功率特性而有望用于钠离子电池 (SIB),因为钒的多种氧化态使其具有高功率特性。然而,它们的开发受到导电性差、次优的高倍率性能和有限的循环寿命的阻碍。在这项工作中,提出了一种涉及钒酸钠 Na2CaV2O6F (CVF) 中 Ca/F 共掺杂的分层结构修饰策略来解决这些问题。通过实验和密度泛函理论计算的结合,证明 Ca/F 协同作用增强了 CVF 中的 Na 层间距,与 Na2V2O6 (NVO) 相比,结晶水含量和体积收缩率降低。此外,Ca/F 掺入显著降低了 Na+ 在材料框架内的扩散潜力。未修饰的 CVF 样品在 10 mA g-1 时表现出 220 mAh g-1 的高可逆容量,在 400 mA g-1 时表现出 65.78 mAh g-1 的出色倍率容量。此外,正极材料在 200 mA g-1 时保持高达 138 mAh g-1 的容量,并在 1.5-4.0 V 的电压范围内循环 100 次后保持 104.88 mAh g-1。这些发现增强了对 NVO 正极材料晶体结构的理解,并为合理设计用于 SIB 的高质量钒酸盐正极铺平了道路。