当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202402746
Jin Li 1 , Junjie Chen 1 , Xiaosa Xu 1 , Zhenyu Wang 1 , Jiadong Shen 1 , Jing Sun 1 , Baoling Huang 1 , Tianshou Zhao 1, 2
Affiliation  

The significant interfacial resistance between solid electrolyte-electrode interfaces is a major bottleneck for the practical application of solid-state lithium batteries. This resistance is primarily caused by the formation of space charge layers (SCLs), resulting from the redistribution of ionic carriers at the interface between dissimilar materials with varying chemical potentials, which lead to insufficient carriers and sluggish lithium-ion transport. In this study, a conjugated structure polymer is constructed through in situ polymerization onto the oxide electrolyte, forming charge-rich SCLs on the organic/inorganic interface, and enabling the interfacial layer to maintain superior ion transfer and contact. The Li solid NMR spectra and computational study suggest that optimized SCLs offer effective pathways for Li+ conduction in the electrolyte, thereby enhancing the interfacial conduction. Furthermore, the designed electrolyte induces the formation of an inorganic-rich interphase layer on the lithium anode, enabling rapid lithium-ion transport and uniform Li deposition. Consequently, the lithium symmetric cell with this electrolyte operates for more than 5100 h, while LiFePO4/Li solid-state batteries can stably cycle up to 800 times at 5 C. This interfacial modification strategy provides a new perspective for the rational design of the charge-rich SCLs and advances the understanding of the SCLs inside the electrolyte.

中文翻译:


通过富含电荷的空间电荷层增强相间离子传输,用于超稳定的固态锂金属电池



固体电解质-电极界面之间显著的界面电阻是固态锂电池实际应用的主要瓶颈。这种电阻主要是由空间电荷层 (SCL) 的形成引起的,这是由于离子载流子在具有不同化学势的不同材料之间的界面上重新分布造成的,从而导致载流子不足和锂离子传输缓慢。在本研究中,通过在氧化物电解质上原位聚合构建共轭结构聚合物,在有机/无机界面上形成富含电荷的 SCL,并使界面层保持良好的离子转移和接触。Li 固体 NMR 波谱和计算研究表明,优化的 SCL 为电解质中的 Li+ 传导提供了有效的途径,从而增强了界面传导。此外,设计的电解质在锂负极上诱导形成富含无机物的界面层,从而实现快速锂离子传输和均匀的锂沉积。因此,使用这种电解液的锂对称电池可运行超过 5100 小时,而 LiFePO4/Li 固态电池在 5 C 下可稳定循环长达 800 次。这种界面修饰策略为合理设计富含电荷的 SCL 提供了新的视角,并促进了对电解质内部 SCL 的理解。
更新日期:2024-09-09
down
wechat
bug