Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modular Customized Biomimetic Nanofluidic Diode for Tunable Asymmetric Ion Transport
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202404605 Sifan Chen 1 , Wentong Meng 1 , Zheming Tong 1 , Pu Chen 1 , Feng Gao 1, 2 , Yang Hou 1 , Jianguo Lu 3 , Qinggang He 1 , Haihua Wang 4 , Xiaoli Zhan 1, 2 , Qinghua Zhang 1, 2
Small ( IF 13.0 ) Pub Date : 2024-09-09 , DOI: 10.1002/smll.202404605 Sifan Chen 1 , Wentong Meng 1 , Zheming Tong 1 , Pu Chen 1 , Feng Gao 1, 2 , Yang Hou 1 , Jianguo Lu 3 , Qinggang He 1 , Haihua Wang 4 , Xiaoli Zhan 1, 2 , Qinghua Zhang 1, 2
Affiliation
Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m−2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.
中文翻译:
用于可调谐不对称离子传输的模块化定制仿生纳米流体二极管
受生物离子通道的启发,人工离子二极管为物理、化学和生物学领域做出了重大贡献。然而,构建同时满足易于制造、高离子传输效率和可调离子传输要求的不对称亚纳流体膜仍然是一个挑战。在这里,采用直接和灵活的原位分阶段主客体自组装策略来制造能够实现分区调节的离子二极管膜。将界面聚合过程与主客体组装策略相结合,可以通过分阶段引入两个带相反电荷的模块来轻松操纵每个模块的类型、顺序、厚度和电荷密度。这种方法能够在很宽的盐度范围内调整离子传输行为,并响应不同的 pH 值。为了验证可控二极管膜的应用潜力,将两个具有不同离子选择性和高电荷密度的离子二极管膜耦合在反向电渗析装置中。这导致在 50 倍 NaCl 浓度梯度下输出功率密度为 63.7 W m-2,比商业标准高 12 倍。这种方法显示出扩大适用于微电子发电设备、海水淡化和生物传感的材料种类的潜力。
更新日期:2024-09-09
中文翻译:
用于可调谐不对称离子传输的模块化定制仿生纳米流体二极管
受生物离子通道的启发,人工离子二极管为物理、化学和生物学领域做出了重大贡献。然而,构建同时满足易于制造、高离子传输效率和可调离子传输要求的不对称亚纳流体膜仍然是一个挑战。在这里,采用直接和灵活的原位分阶段主客体自组装策略来制造能够实现分区调节的离子二极管膜。将界面聚合过程与主客体组装策略相结合,可以通过分阶段引入两个带相反电荷的模块来轻松操纵每个模块的类型、顺序、厚度和电荷密度。这种方法能够在很宽的盐度范围内调整离子传输行为,并响应不同的 pH 值。为了验证可控二极管膜的应用潜力,将两个具有不同离子选择性和高电荷密度的离子二极管膜耦合在反向电渗析装置中。这导致在 50 倍 NaCl 浓度梯度下输出功率密度为 63.7 W m-2,比商业标准高 12 倍。这种方法显示出扩大适用于微电子发电设备、海水淡化和生物传感的材料种类的潜力。