当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring MnO2 Cathode Interface via Organic–Inorganic Hybridization Engineering for Ultra-Stable Aqueous Zinc-Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-09 , DOI: 10.1002/aenm.202402819
Yaxi Ding 1 , Chun Cai 1 , Longtao Ma 2 , Jiahong Wang 1 , Michael Peter Mercer 3, 4 , Jun Liu 2 , Denis Kramer 3 , Xuefeng Yu 1 , Dongfeng Xue 5 , Chunyi Zhi 6 , Chao Peng 1
Affiliation  

Manganese (Mn)-based aqueous zinc ion batteries show great promise for large-scale energy storage due to their high capacity, environmental friendliness, and low cost. However, they suffer from the severe capacity decay associated with the dissolution of Mn from the cathode/electrolyte interface. In this study, theoretical modeling inspires that the amino acid molecule, isoleucine (Ile), can be an ideal surface coating material for α-MnO2 to stabilize the surface Mn lattice and mitigate Mn dissolution, thereby enhancing cycling stability. Furthermore, the coated Ile molecular layers can accumulate Zn2+ ions from the electrolyte and promote those ions’ transport to the α-MnO2 cathode while prohibiting H2O from accessing the α-MnO2 surface, reducing the surface erosion. The compact organic–inorganic interface is experimentally synthesized for α-MnO2 utilizing Ile that shows homogeneous distribution on the well-defined Ile-α-MnO2 nanorod electrodes. The fabricated aqueous zinc-ion battery exhibits a high specific capacity (332.8 mAh g−1 at 0.1 A g−1) and excellent cycling stability (85% after 2000 cycles at 1 A g−1) as well as good inhibition toward Mn2+ dissolution, surpassing most reported cathode materials. This organic–inorganic hybrid interface design provides a new, simple avenue for developing high-performance and low-cost Mn-based aqueous zinc ion batteries (AZIBs).

中文翻译:


通过有机-无机杂化工程定制 MnO2 阴极界面以获得超稳定的水系锌离子电池



锰(Mn)基水系锌离子电池由于其高容量、环境友好和低成本而在大规模储能方面显示出巨大的前景。然而,它们遭受与阴极/电解质界面中锰的溶解相关的严重容量衰减。在本研究中,理论模型启发,氨基酸分子异亮氨酸(Ile)可以作为α-MnO 2的理想表面涂层材料,以稳定表面Mn晶格并减轻Mn溶解,从而增强循环稳定性。此外,涂覆的Ile分子层可以积聚来自电解质的Zn 2+离子并促进这些离子传输至α-MnO 2阴极,同时阻止H 2 O进入α-MnO 2表面,从而减少表面侵蚀。利用 Ile 实验合成了 α-MnO 2的紧凑有机-无机界面,该界面在明确的 Ile-α-MnO 2纳米棒电极上显示出均匀分布。所制备的水系锌离子电池表现出高比容量(0.1 A g -1下为332.8 mAh g -1 )和优异的循环稳定性(1 A g -1下2000次循环后为85%)以及对Mn 2良好的抑制作用+溶解度,超过大多数报道的正极材料。这种有机-无机混合界面设计为开发高性能和低成本的锰基水性锌离子电池(AZIB)提供了一种新的、简单的途径。
更新日期:2024-09-09
down
wechat
bug