当前位置:
X-MOL 学术
›
Int. J. Mech. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Brittle-ductile transition mechanism during grinding 4H-SiC wafer considering laminated structure
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.ijmecsci.2024.109685 Meina Qu , Chuanzhen Huang , Shuiquan Huang , Xiaobo Peng , Zhen Wang , Longhua Xu , Zhengkai Xu , Dijia Zhang , Baosu Guo
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.ijmecsci.2024.109685 Meina Qu , Chuanzhen Huang , Shuiquan Huang , Xiaobo Peng , Zhen Wang , Longhua Xu , Zhengkai Xu , Dijia Zhang , Baosu Guo
4H-SiC wafer with alloy backside layer is gradually applied in power devices. However, the laminated structure presents various challenges in manufacturing. In this study, a model for brittle-ductile transition in grinding of laminated materials is established and verified by grinding experiment to ensure the complete removal of the alloy backside layer while achieving ductile removal of the 4H-SiC layer. In the modeling process, the maximum unreformed chip thickness and brittle-ductile transition critical depth of each-layer in the laminated material is deriving, taking into account the laminated structure. Consider the variability in proportion of dynamic active grits during grinding, set operation is introduced to analyze the relationship between sets maximum unreformed chip thickness and brittle-ductile transition critical depth, and to predict the removal mechanism of the 4H-SiC layer. Comparing the predicted results with experimental grinding data, found that under the conditions of grinding wheel with average size of abrasive 10 μm, grinding wheel speed v s of 74 m/s, grinding depth a p of 10 μm, and feeding speed v w of 2 mm/s, the alloy backside layer can complete removal while achieving ductile removal of the 4H-SiC layer. This study provides a new method for predicting removal mechanism in grinding of laminated material and theoretical guidance for optimizing machining parameters of 4H-SiC wafer with alloy backside layer.
中文翻译:
考虑叠片结构的 4H-SiC 晶片研磨过程中的脆性-韧性过渡机制
具有合金背面层的 4H-SiC 晶片逐渐应用于功率器件。然而,层压结构在制造过程中提出了各种挑战。本研究建立了叠片材料磨削中脆性-延性转变的模型,并通过磨削实验验证了合金背面层的完全去除,同时实现了4H-SiC层的延展性去除。在建模过程中,考虑到层压结构,可以推导出层压材料中每层的最大未重整芯片厚度和脆性-延展性过渡临界深度。考虑磨削过程中动态活性磨粒比例的变化,引入集式操作,分析集最大未重整切屑厚度与脆性-韧性过渡临界深度之间的关系,预测4H-SiC层的去除机理。将预测结果与实验磨削数据进行比较,发现在平均磨粒尺寸为 10 μm、砂轮速度 vs 74 m/s、磨削深度 ap 为 10 μm、进给速度 vw 为 2 mm/s 的砂轮条件下,合金背面层可以完全去除,同时实现 4H-SiC 层的延展性去除。本研究为预测叠片材料磨削中去除机理提供了新的方法,为优化合金背面层4H-SiC晶片的加工参数提供了理论指导。
更新日期:2024-08-30
中文翻译:
考虑叠片结构的 4H-SiC 晶片研磨过程中的脆性-韧性过渡机制
具有合金背面层的 4H-SiC 晶片逐渐应用于功率器件。然而,层压结构在制造过程中提出了各种挑战。本研究建立了叠片材料磨削中脆性-延性转变的模型,并通过磨削实验验证了合金背面层的完全去除,同时实现了4H-SiC层的延展性去除。在建模过程中,考虑到层压结构,可以推导出层压材料中每层的最大未重整芯片厚度和脆性-延展性过渡临界深度。考虑磨削过程中动态活性磨粒比例的变化,引入集式操作,分析集最大未重整切屑厚度与脆性-韧性过渡临界深度之间的关系,预测4H-SiC层的去除机理。将预测结果与实验磨削数据进行比较,发现在平均磨粒尺寸为 10 μm、砂轮速度 vs 74 m/s、磨削深度 ap 为 10 μm、进给速度 vw 为 2 mm/s 的砂轮条件下,合金背面层可以完全去除,同时实现 4H-SiC 层的延展性去除。本研究为预测叠片材料磨削中去除机理提供了新的方法,为优化合金背面层4H-SiC晶片的加工参数提供了理论指导。