当前位置:
X-MOL 学术
›
Commun. Nonlinear Sci. Numer. Simul.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
From Lévy walks to fractional material derivative: Pointwise representation and a numerical scheme
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.cnsns.2024.108316 Łukasz Płociniczak , Marek A. Teuerle
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.cnsns.2024.108316 Łukasz Płociniczak , Marek A. Teuerle
The fractional material derivative appears as the fractional operator that governs the dynamics of the scaling limits of Lévy walks - a stochastic process that originates from the famous continuous-time random walks. It is usually defined as the Fourier–Laplace multiplier, therefore, it can be thought of as a pseudo-differential operator. In this paper, we show that there exists a local representation in time and space, pointwise, of the fractional material derivative. This allows us to define it on a space of locally integrable functions which is larger than the original one in which Fourier and Laplace transform exist as functions.
中文翻译:
从 Lévy 步行到分数材料导数:逐点表示和数值方案
分数材料导数表现为控制 Lévy 游走缩放极限动态的分数算子,这是一种源自著名的连续时间随机游走的随机过程。它通常被定义为傅立叶-拉普拉斯乘子,因此,它可以被认为是伪微分算子。在本文中,我们证明了分数材料导数在时间和空间上存在逐点的局部表示。这使我们能够将其定义在一个局部可积函数的空间上,该空间比傅立叶和拉普拉斯变换作为函数存在的原始空间更大。
更新日期:2024-08-30
中文翻译:
从 Lévy 步行到分数材料导数:逐点表示和数值方案
分数材料导数表现为控制 Lévy 游走缩放极限动态的分数算子,这是一种源自著名的连续时间随机游走的随机过程。它通常被定义为傅立叶-拉普拉斯乘子,因此,它可以被认为是伪微分算子。在本文中,我们证明了分数材料导数在时间和空间上存在逐点的局部表示。这使我们能够将其定义在一个局部可积函数的空间上,该空间比傅立叶和拉普拉斯变换作为函数存在的原始空间更大。