当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In-situ growth strategy to synthesize porous nano-coral-like structure OER catalyst based on nife foam alloy substrate
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jallcom.2024.176310 Yu Zhang , Yaoxia Yang , Biaobiao Lu , RuiRui Zhang , Fuxing Zhou , Qingtao Wang , Jian Li , Zhiwang Yang , Ziqiang Lei
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jallcom.2024.176310 Yu Zhang , Yaoxia Yang , Biaobiao Lu , RuiRui Zhang , Fuxing Zhou , Qingtao Wang , Jian Li , Zhiwang Yang , Ziqiang Lei
The preparation of alloy-based catalysts is an effective approach to simplify the catalyst synthesis process for electrocatalysis. The oxygen evolution reaction (OER) is considered a key step in water splitting. By incorporating interface engineering design, electronic state optimization, and heteroatom doping, the electrocatalytic performance can be enhanced. In this study, a simple method was used to activate the NiFe foam (NIF) alloy substrate by acid etching, followed by in-situ S-doping of Cr via a hydrothermal method to synthesize S-Cr0.6 @NiFe/NIF catalyst material. Its outstanding porous nanocoral-like structure not only provides abundant active sites but also exhibits superior catalytic water splitting performance, demonstrating superhydrophilic and superaerophobic characteristics. At a current density of 10 mA cm−2 , only 262 mV overpotential is required to drive the OER (under basic conditions of 1 M KOH), with a low Tafel slope (71.6 mV dec−1 ) and a large electrochemical active surface area (ECSA = 85.25 cm2 ). After 80 hours of OER test, the current density of S-Cr0.6 @NiFe/NIF shows negligible change. This study provides an attractive, effective, and feasible method for the in-situ growth design of alloy-based catalysts.
中文翻译:
基于nife泡沫合金基底的原位生长策略合成多孔纳米珊瑚结构OER催化剂
合金基催化剂的制备是简化电催化催化剂合成过程的有效途径。析氧反应(OER)被认为是水分解的关键步骤。通过结合界面工程设计、电子态优化和杂原子掺杂,可以增强电催化性能。本研究采用简单的方法通过酸蚀活化镍铁泡沫(NIF)合金基体,然后通过水热法原位S掺杂Cr,合成S-Cr0.6@NiFe/NIF催化剂材料。其出色的多孔纳米珊瑚结构不仅提供了丰富的活性位点,而且表现出优异的催化水分解性能,表现出超亲水和超疏气的特性。在电流密度为 10 mA cm−2 时,仅需要 262 mV 过电势即可驱动 OER(在 1 M KOH 的基本条件下),具有较低的塔菲尔斜率 (71.6 mV dec−1) 和较大的电化学活性表面积(ECSA = 85.25 cm2)。经过80小时的OER测试,S-Cr0.6@NiFe/NIF的电流密度变化可以忽略不计。这项研究为合金基催化剂的原位生长设计提供了一种有吸引力、有效且可行的方法。
更新日期:2024-09-06
中文翻译:
基于nife泡沫合金基底的原位生长策略合成多孔纳米珊瑚结构OER催化剂
合金基催化剂的制备是简化电催化催化剂合成过程的有效途径。析氧反应(OER)被认为是水分解的关键步骤。通过结合界面工程设计、电子态优化和杂原子掺杂,可以增强电催化性能。本研究采用简单的方法通过酸蚀活化镍铁泡沫(NIF)合金基体,然后通过水热法原位S掺杂Cr,合成S-Cr0.6@NiFe/NIF催化剂材料。其出色的多孔纳米珊瑚结构不仅提供了丰富的活性位点,而且表现出优异的催化水分解性能,表现出超亲水和超疏气的特性。在电流密度为 10 mA cm−2 时,仅需要 262 mV 过电势即可驱动 OER(在 1 M KOH 的基本条件下),具有较低的塔菲尔斜率 (71.6 mV dec−1) 和较大的电化学活性表面积(ECSA = 85.25 cm2)。经过80小时的OER测试,S-Cr0.6@NiFe/NIF的电流密度变化可以忽略不计。这项研究为合金基催化剂的原位生长设计提供了一种有吸引力、有效且可行的方法。