当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis
Chemical Science ( IF 7.6 ) Pub Date : 2024-09-09 , DOI: 10.1039/d4sc03896g Kate Jesse , John S Anderson
Chemical Science ( IF 7.6 ) Pub Date : 2024-09-09 , DOI: 10.1039/d4sc03896g Kate Jesse , John S Anderson
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal–ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal–ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal–ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal–oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
中文翻译:
利用基于配体的质子和电子转移进行有氧反应性和催化
虽然 O2 是一种丰富的、良性的、热力学上有效的氧化剂,但它在动力学上也具有惰性。这通常限制了它在合成转换中的使用。相应地,与 O2 的直接有氧反应通常需要相对苛刻或强迫的条件来克服这一动力学障碍。强迫条件限制了产品的选择性,并可能导致过度氧化。或者,O2 可以被催化剂活化以促进氧化反应性,并且有各种复杂的例子表明过渡金属催化剂促进有氧反应性。许多努力都集中在利用金属-配体协同性来促进质子和电子的运动以激活 O2。这种方法受到酶活性位点的启发,酶活性位点经常使用次级球来促进 O2 的激活和底物的氧化。然而,直到最近才开始关注利用金属-配体协同性进行有氧反应性,尤其是催化。本观点将讨论最近为激活 O2、活性金属-氧中间体的产生和稳定以及氧化反应性和催化而引导金属-配体协同性所做的努力。虽然在这一领域已经取得了重大进展,但仍有挑战需要克服,也存在开发利用这种仿生策略的高效催化剂的机会。
更新日期:2024-09-09
中文翻译:
利用基于配体的质子和电子转移进行有氧反应性和催化
虽然 O2 是一种丰富的、良性的、热力学上有效的氧化剂,但它在动力学上也具有惰性。这通常限制了它在合成转换中的使用。相应地,与 O2 的直接有氧反应通常需要相对苛刻或强迫的条件来克服这一动力学障碍。强迫条件限制了产品的选择性,并可能导致过度氧化。或者,O2 可以被催化剂活化以促进氧化反应性,并且有各种复杂的例子表明过渡金属催化剂促进有氧反应性。许多努力都集中在利用金属-配体协同性来促进质子和电子的运动以激活 O2。这种方法受到酶活性位点的启发,酶活性位点经常使用次级球来促进 O2 的激活和底物的氧化。然而,直到最近才开始关注利用金属-配体协同性进行有氧反应性,尤其是催化。本观点将讨论最近为激活 O2、活性金属-氧中间体的产生和稳定以及氧化反应性和催化而引导金属-配体协同性所做的努力。虽然在这一领域已经取得了重大进展,但仍有挑战需要克服,也存在开发利用这种仿生策略的高效催化剂的机会。