Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Emerging Two-Dimensional Materials for Proton-Based Energy Storage
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-09 , DOI: 10.1021/acsnano.4c06737 Junlei Qi 1 , Kai Bao 1 , Wenbin Wang 1 , Jingkun Wu 1 , Lingzhi Wang 1 , Cong Ma 1 , Zongxiao Wu 1 , Qiyuan He 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-09 , DOI: 10.1021/acsnano.4c06737 Junlei Qi 1 , Kai Bao 1 , Wenbin Wang 1 , Jingkun Wu 1 , Lingzhi Wang 1 , Cong Ma 1 , Zongxiao Wu 1 , Qiyuan He 1, 2
Affiliation
The rapid diffusion kinetics and smallest ion radius make protons the ideal cations toward the ultimate energy storage technology combining the ultrafast charging capabilities of supercapacitors and the high energy densities of batteries. Despite the concept existing for centuries, the lack of satisfactory electrode materials hinders its practical development. Recently, the rapid advancement of the emerging two-dimensional (2D) materials, characterized by their ultrathin morphology, interlayer van der Waals gaps, and distinctive electrochemical properties, injects promises into future proton-based energy storage systems. In this perspective, we comprehensively summarize the current advances in proton-based energy storage based on 2D materials. We begin by providing an overview of proton-based energy storage systems, including proton batteries, pseudocapacitors and electrical double layer capacitors. We then elucidate the fundamental knowledge about proton transport characteristics, including in electrolytes, at electrolyte/electrode interfaces, and within electrode materials, particularly in 2D material systems. We comprehensively summarize specific cases of 2D materials as proton electrodes, detailing their design concepts, proton transport mechanism and electrochemical performance. Finally, we provide insights into the prospects of proton-based energy storage systems, emphasizing the importance of rational design of 2D electrode materials and matching electrolyte systems.
中文翻译:
用于质子储能的新兴二维材料
快速的扩散动力学和最小的离子半径使质子成为最终储能技术的理想阳离子,该技术结合了超级电容器的超快充电能力和电池的高能量密度。尽管这个概念已经存在了几个世纪,但缺乏令人满意的电极材料阻碍了其实际发展。近年来,新兴二维(2D)材料的快速发展,以其超薄形态、层间范德华间隙和独特的电化学性能为特征,为未来基于质子的储能系统带来了希望。从这个角度,我们全面总结了当前基于二维材料的质子储能的进展。我们首先概述基于质子的储能系统,包括质子电池、赝电容器和双电层电容器。然后,我们阐明了有关质子传输特性的基础知识,包括电解质中、电解质/电极界面以及电极材料内,特别是二维材料系统中的质子传输特性。我们全面总结了二维材料作为质子电极的具体案例,详细介绍了它们的设计理念、质子传输机制和电化学性能。最后,我们对质子储能系统的前景进行了展望,强调了合理设计二维电极材料和匹配电解质系统的重要性。
更新日期:2024-09-09
中文翻译:
用于质子储能的新兴二维材料
快速的扩散动力学和最小的离子半径使质子成为最终储能技术的理想阳离子,该技术结合了超级电容器的超快充电能力和电池的高能量密度。尽管这个概念已经存在了几个世纪,但缺乏令人满意的电极材料阻碍了其实际发展。近年来,新兴二维(2D)材料的快速发展,以其超薄形态、层间范德华间隙和独特的电化学性能为特征,为未来基于质子的储能系统带来了希望。从这个角度,我们全面总结了当前基于二维材料的质子储能的进展。我们首先概述基于质子的储能系统,包括质子电池、赝电容器和双电层电容器。然后,我们阐明了有关质子传输特性的基础知识,包括电解质中、电解质/电极界面以及电极材料内,特别是二维材料系统中的质子传输特性。我们全面总结了二维材料作为质子电极的具体案例,详细介绍了它们的设计理念、质子传输机制和电化学性能。最后,我们对质子储能系统的前景进行了展望,强调了合理设计二维电极材料和匹配电解质系统的重要性。