Nature Food ( IF 23.6 ) Pub Date : 2024-09-09 , DOI: 10.1038/s43016-024-01045-3 Benjamin Decardi-Nelson 1 , Fengqi You 1, 2, 3
Plant factories with artificial lighting (PFALs) can boost food production per unit area but require resources such as carbon dioxide and energy to maintain optimal plant growth conditions. Here we use computational modelling and artificial intelligence (AI) to examine plant–environment interactions across ten diverse global locations with distinct climates. AI reduces energy use by optimizing lighting and climate regulation systems, with energy use in PFALs ranging from 6.42 kWh kg−1 in cooler climates to 7.26 kWh kg−1 in warmer climates, compared to 9.5–10.5 kWh kg−1 in PFALs using existing, non-AI-based technology. Outdoor temperatures between 0 °C and 25 °C favour ventilation-related energy use reduction, with outdoor humidity showing no clear pattern or effect on energy use. Ventilation-related energy savings negatively impact other resource utilization such as carbon dioxide use. AI can substantially enhance energy savings in PFALs and support sustainable food production.
中文翻译:
人工智能可以调节光照和气候系统,以减少植物工厂的能源使用并支持可持续的食品生产
采用人工照明 (PFAL) 的植物工厂可以提高单位面积的粮食产量,但需要二氧化碳和能源等资源来维持最佳的植物生长条件。在这里,我们使用计算建模和人工智能 (AI) 来研究全球 10 个不同气候地点的植物与环境相互作用。AI 通过优化照明和气候调节系统来减少能源使用,PFAL 的能源使用范围从凉爽气候下的 6.42 kWh kg-1 到温暖气候下的 7.26 kWh kg-1,而使用现有的非基于 AI 的技术的 PFAL 为 9.5-10.5 kWh kg-1。室外温度在 0 °C 到 25 °C 之间有利于减少与通风相关的能源使用,室外湿度对能源使用没有明显的模式或影响。与通风相关的节能会对其他资源利用产生负面影响,例如二氧化碳的使用。AI 可以显著提高 PFAL 的节能效果并支持可持续的食品生产。